Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 291(19): 9883-93, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26929409

RESUMEN

In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro.


Asunto(s)
Bacteriorodopsinas/metabolismo , Eubacterium/metabolismo , Halorrodopsinas/metabolismo , Bombas Iónicas/metabolismo , Transporte Iónico/efectos de la radiación , Luz , Fenómenos Fisiológicos Bacterianos , Bacteriorodopsinas/genética , Bacteriorodopsinas/efectos de la radiación , Cloruros/metabolismo , Eubacterium/efectos de la radiación , Halorrodopsinas/genética , Halorrodopsinas/efectos de la radiación , Bombas Iónicas/química , Bombas Iónicas/efectos de la radiación , Mutación/genética , Filogenia , Sodio/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
2.
Biochemistry ; 55(7): 1036-48, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26812529

RESUMEN

Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H(+)-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as Ma), which is different from M, with a pKa of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A pKa value of ca. 9.5 was estimated for this inversion and was in good agreement with the pKa value of the formation of Ma (∼ 9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Moleculares , Bombas de Protones/metabolismo , Rodopsinas Microbianas/metabolismo , Algoritmos , Sustitución de Aminoácidos , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis/efectos de la radiación , Transporte Biológico/efectos de la radiación , Eubacterium/metabolismo , Eubacterium/efectos de la radiación , Gammaproteobacteria/metabolismo , Gammaproteobacteria/efectos de la radiación , Halobacterium salinarum/metabolismo , Halobacterium salinarum/efectos de la radiación , Concentración de Iones de Hidrógeno , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Membrana Dobles de Lípidos/química , Membranas Artificiales , Mutación , Fosfatidilcolinas/química , Procesos Fotoquímicos , Bombas de Protones/química , Bombas de Protones/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...