Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38896029

RESUMEN

Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.


Asunto(s)
Sequías , Eucalyptus , Agua , Xilema , Eucalyptus/fisiología , Eucalyptus/genética , Xilema/fisiología , Xilema/metabolismo , Agua/metabolismo , Agua/fisiología , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Tamaño de la Célula , Pared Celular/metabolismo , Madera/fisiología , Transcriptoma
2.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811870

RESUMEN

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Asunto(s)
Eucalyptus , Fósforo , Fotosíntesis , Plantones , Silicio , Eucalyptus/efectos de los fármacos , Eucalyptus/fisiología , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Silicio/farmacología , Fósforo/metabolismo , Fósforo/deficiencia , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Estrés Oxidativo/efectos de los fármacos
3.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641865

RESUMEN

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Asunto(s)
Carbono , Eucalyptus , Fotosíntesis , Árboles , Agua , Madera , Eucalyptus/fisiología , Eucalyptus/metabolismo , Carbono/metabolismo , Árboles/fisiología , Árboles/metabolismo , Agua/metabolismo , Madera/fisiología , Transpiración de Plantas/fisiología , Modelos Biológicos
4.
New Phytol ; 243(1): 82-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666344

RESUMEN

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Asunto(s)
Cambio Climático , Eucalyptus , Hojas de la Planta , Especificidad de la Especie , Eucalyptus/fisiología , Eucalyptus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Temperatura , Plantones/crecimiento & desarrollo , Plantones/fisiología , Aclimatación/fisiología , Australia , Geografía
5.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221855

RESUMEN

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Asunto(s)
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiología , Empalme Alternativo/genética , Madera , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
6.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105548

RESUMEN

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Asunto(s)
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiología , Fósforo/metabolismo , Oomicetos/fisiología , Oomicetos/patogenicidad , Eucalyptus/microbiología , Eucalyptus/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/microbiología , Simbiosis/fisiología , Especificidad de la Especie , Ambiente
7.
Nat Commun ; 14(1): 7173, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935674

RESUMEN

Tradeoffs between the energetic benefits and costs of traits can shape species and trait distributions along environmental gradients. Here we test predictions based on such tradeoffs using survival, growth, and 50 photosynthetic, hydraulic, and allocational traits of ten Eucalyptus species grown in four common gardens along an 8-fold gradient in precipitation/pan evaporation (P/Ep) in Victoria, Australia. Phylogenetically structured tests show that most trait-environment relationships accord qualitatively with theory. Most traits appear adaptive across species within gardens (indicating fixed genetic differences) and within species across gardens (indicating plasticity). However, species from moister climates have lower stomatal conductance than others grown under the same conditions. Responses in stomatal conductance and five related traits appear to reflect greater mesophyll photosynthetic sensitivity of mesic species to lower leaf water potential. Our data support adaptive cross-over, with realized height growth of most species exceeding that of others in climates they dominate. Our findings show that pervasive physiological, hydraulic, and allocational adaptations shape the distributions of dominant Eucalyptus species along a subcontinental climatic moisture gradient, driven by rapid divergence in species P/Ep and associated adaptations.


Asunto(s)
Eucalyptus , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Clima , Fotosíntesis , Agua , Eucalyptus/fisiología , Victoria
8.
Tree Physiol ; 43(6): 979-994, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36851855

RESUMEN

The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.


Asunto(s)
Sequías , Eucalyptus , Eucalyptus/fisiología , Hojas de la Planta/fisiología , Reguladores del Crecimiento de las Plantas , Plantones/metabolismo , Agua/fisiología
9.
New Phytol ; 237(6): 2039-2053, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513603

RESUMEN

Introducing N2 -fixing tree species into Eucalyptus plantations could replace nitrogen (N) fertilization to maintain high levels of N consumption and productivity. However, N enrichment may exacerbate phosphorus (P) limitation as Eucalyptus robusta Smith is extensively planted in P-poor tropical and subtropical soils. We conducted a field experiment in a pure plantation of Eucalyptus urophylla × grandis to investigate the impacts of N fertilization and introduced an N2 -fixing tree of Dalbergia odorifera T. Chen on soil P transformation. Nitrogen fertilization significantly enhanced soil occluded P pool and reduced the other P pools due to acidification-induced pH-sensitive geochemical processes, lowering Eucalyptus leaf P concentration with higher N : P ratio. By contrast, introduced N2 -fixing tree species did not change soil pH, labile inorganic P pool, and Eucalyptus leaf N : P ratio, even enhanced organic P pools and reduced occluded P pool probably due to altering microbial community composition particularly stimulating arbuscular mycorrhiza fungal abundance. Our results revealed differential responses and mechanistic controls of soil P transformation in Eucalyptus plantations with N fertilization and introduced N2 -fixing tree species. The dissolution of occluded P pool along with organic P accumulation observed in the mixed plantations may represent a promising future to better manage soil P availability.


Asunto(s)
Eucalyptus , Árboles , Árboles/fisiología , Suelo/química , Eucalyptus/fisiología , Fósforo , Nitrógeno/análisis , Fertilización
10.
Plant Physiol Biochem ; 186: 64-75, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810688

RESUMEN

Eucalypts are the most planted hardwood trees worldwide because of their very rapid growth, exceptional wood quality and adaptability. However, most commercial species and derived hybrids are sensitive to frost, which remains as the largest obstacle to their introduction in warm/temperate climates. As evergreen species, Eucalypts have developed the ability to tolerate frost events based on physiological and molecular responses triggered by previous exposure to cold temperatures, globally named cold acclimation. To characterize the acclimation process in two species with different tolerance to frost, E. grandis (Eg) and E. benthamii (Eb), seedlings were exposed for different times to low temperatures. Frost tolerance was estimated in leaves by an electrolyte leakage assay, and metabolome and morpho-physiological changes studied and correlated to the observed acclimation responses. Eb showed higher basal frost tolerance and an earlier and stronger acclimation response to cold temperatures than in the frost sensitive Eg. Eb was able to modify several morpho-physiological parameters, with a restriction in plant height, leaf area and leaf fresh weight during acclimation. Metabolome characterization allowed us to differentiate species and strengthen our understanding of their acclimation response dynamics. Interestingly, Eb displayed an early phase of sugar accumulation followed by a rise of different metabolites with possible roles as osmolytes and antioxidants, that correlated to frost tolerance and may explain Eb higher capacity to acclimate. This novel approach has helped us to point to the main metabolic processes underlying the cold tolerance acquisition process in two relevant Eucalyptus species.


Asunto(s)
Eucalyptus , Aclimatación , Frío , Eucalyptus/fisiología , Congelación , Hojas de la Planta/fisiología , Árboles/fisiología
11.
Plant Cell Environ ; 45(9): 2744-2761, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35686437

RESUMEN

There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.


Asunto(s)
Ecosistema , Eucalyptus , Dióxido de Carbono , Sequías , Eucalyptus/fisiología , Bosques , Hojas de la Planta , Agua/fisiología
12.
Plant Cell Environ ; 45(9): 2573-2588, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35706133

RESUMEN

The isohydric-anisohydric continuum describes the relative stringency of stomatal control of leaf water potential (ψleaf ) during drought. Hydroscape area (HA)-the water potential landscape over which stomata regulate ψleaf -has emerged as a useful metric of the iso/anisohydric continuum because it is strongly linked to several hydraulic, photosynthetic and structural traits. Previous research on HA focused on broad ecological patterns involving several plant clades. Here we investigate the relationships between HA and climatic conditions and functional traits across ecologically diverse but closely related species while accounting for phylogeny. Across a macroclimatic moisture gradient, defined by the ratio of mean annual precipitation to mean annual pan evaporation (P/Ep ), HA decreased with increased P/Ep across 10 Eucalyptus species. Greater anisohydry reflects lower turgor loss points and greater hydraulic safety, mirroring global patterns. Larger HA coincides with mesophyll photosynthetic capacity that is more sensitive to ψleaf . Hydroscapes exhibit little plasticity in response to variation in water supply, and the extent of plasticity does not vary with P/Ep of native habitats. These findings strengthen the case that HA is a useful metric for characterizing drought tolerance and water-status regulation.


Asunto(s)
Eucalyptus , Sequías , Eucalyptus/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua/fisiología
13.
New Phytol ; 233(5): 2058-2070, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850394

RESUMEN

Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.


Asunto(s)
Sequías , Eucalyptus , Eucalyptus/fisiología , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Agua , Xilema/fisiología
14.
Tree Physiol ; 42(4): 815-830, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791492

RESUMEN

The frequency and severity of drought events are expected to increase due to climate change, with optimal environmental conditions for forestry likely to shift. Modeling plant responses to a changing climate is therefore vital. We tested the process-based gain-risk model to predict stomatal responses to drought of two Eucalyptus hybrids. The process-based gain-risk model has the advantage that all the parameters used within the model are based on measurable plant traits. The gain-risk model proposes that plants optimize photosynthetic gain while minimizing a hydraulic cost. Previous versions of the model used hydraulic risk as a cost function; however, they did not account for delayed or reduced hydraulic recovery rates from embolism post-drought. Hydraulic recovery has been seen in many species, however it is still unclear how this inclusion of a partial or delayed hydraulic recovery would affect the predictive power of the gain-risk model. Many hydraulic parameters required by the model are also difficult to measure and are not freely available. We therefore tested a simplified gain-risk model that includes a delayed or reduced hydraulic recovery component post-drought. The simplified gain-risk model performed well at predicting stomatal responses in both Eucalyptus grandis × camaldulensis (GC) and Eucalyptus urophylla × grandis (UG). In this study two distinct strategies were seen between GC and UG, with GC being more resistant to embolism formation, however it could not recover hydraulic conductance compared with UG. The inclusion of a delayed or reduced hydraulic recovery component slightly improved model predictions for GC, however not for UG, which can be related to UG being able to recover lost hydraulic conductance and therefore can maintain stomatal conductance regardless of hydraulic risk. Even though the gain-risk model shows promise in predicting plant responses, more information is needed regarding hydraulic recovery after drought.


Asunto(s)
Sequías , Eucalyptus , Eucalyptus/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua
15.
PLoS One ; 16(11): e0260337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34813624

RESUMEN

Biomass and carbon (C) distribution are suggested as strategies of plant responses to resource stress. Understanding the distribution patterns of biomass and C is the key to vegetation restoration in fragile ecosystems, however, there is limited understanding of the intraspecific biomass and C distributions of shrubs resulting from plant interactions in karst areas. In this study, three vegetation restoration types, a Dodonaea viscosa monoculture (DM), a Eucalyptus maideni and D. viscosa mixed-species plantation (EDP) and a Pinus massoniana and D. viscosa mixed-species plantation (PDP), were selected to determine the effects of plant interactions on the variations in the C distributions of D. viscosa among the three vegetation restoration types following 7 years of restoration. The results showed that: (1) plant interactions decreased the leaf biomass fraction. The interaction of P. massoniana and D. viscosa decreased the branch biomass fraction and increased the stem and root biomass fraction, but not the interaction of E. maideni and D. viscosa. Plant interactions changed the C concentrations of stems and roots rather than those of leaves and branches. (2) Plant interactions affected the soil nutrients and forest characteristics significantly. Meanwhile, the biomass distribution was affected by soil total nitrogen, clumping index and gap fraction; the C concentrations were influenced by the leaf area index and soil total phosphorus. (3) The C storage proportions of all the components correlated significantly with the proportion of biomass. Our results suggested that both the biomass distribution and C concentration of D. viscosa were affected by plant interactions, however, the biomass fraction not the C concentration determines the C storage fraction characteristics for D. viscosa.


Asunto(s)
Carbono/análisis , Eucalyptus/fisiología , Pinus/fisiología , Sapindaceae/fisiología , Biomasa , Carbono/metabolismo , Ecosistema , Bosques , Suelo/química
16.
Plant Cell Environ ; 44(9): 2938-2950, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033133

RESUMEN

Fertilization is commonly used to increase growth in forest plantations, but it may also affect tree water relations and responses to drought. Here, we measured changes in biomass, transpiration, sapwood-to-leaf area ratio (As :Al ) and sap flow driving force (ΔΨ) during the 6-year rotation of tropical plantations of Eucalyptus grandis under controlled conditions for throughfall and potassium (K) fertilization. K fertilization increased final tree height by 8 m. Throughfall exclusion scarcely affected tree functioning because of deep soil water uptake. Tree growth increased in K-supplied plots and remained stable in K-depleted plots as tree height increased, while growth per unit leaf area increased in all plots. Stand transpiration and hydraulic conductance standardized per leaf area increased with height in K-depleted plots, but remained stable or decreased in K-supplied plots. Greater Al in K-supplied plots increased the hydraulic constraints on water use. This involved a direct mechanism through halved As :Al in K-supplied plots relative to K-depleted plots, and an indirect mechanism through deteriorated water status in K-supplied plots, which prevented the increase in ΔΨ with tree height. K fertilization in tropical plantations reduces the hydraulic compensation to growth, which could increase the risk of drought-induced dieback under climate change.


Asunto(s)
Eucalyptus/metabolismo , Fertilizantes , Agricultura Forestal/métodos , Potasio/farmacología , Árboles/metabolismo , Agua/metabolismo , Biomasa , Eucalyptus/efectos de los fármacos , Eucalyptus/fisiología , Hojas de la Planta/metabolismo , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Árboles/efectos de los fármacos , Árboles/fisiología , Xilema/metabolismo
17.
Plant Cell Environ ; 44(2): 535-547, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33125164

RESUMEN

Gall-inducing insects and their hosts present some of the most intricate plant-herbivore interactions. Oviposition on the host is often the first cue of future herbivory and events at this early time point can affect later life stages. Many gallers are devastating plant pests, yet little information regarding the plant-insect molecular interplay exists, particularly following egg deposition. We studied the physiological and transcriptional responses of Eucalyptus following oviposition by the gall-inducing wasp, Leptocybe invasa, to explore potential mechanisms governing defence responses and gall development. RNA sequencing and microscopy were used to explore a susceptible Eucalyptus-L. invasa interaction. Infested and control material was compared over time (1-3, 7 and 90 days post oviposition) to examine the transcriptional and morphological changes. Oviposition induces accumulation of reactive oxygen species and phenolics which is reflected in the transcriptome analysis. Gene expression supports phytohormones and 10 transcription factor subfamilies as key regulators. The egg and oviposition fluid stimulate cell division resulting in gall development. Eucalyptus responses to oviposition are apparent within 24 hr. Putative defences include the oxidative burst and barrier reinforcement. However, egg and oviposition fluid stimuli may redirect these responses towards gall development.


Asunto(s)
Eucalyptus/fisiología , Insectos/fisiología , Tumores de Planta/parasitología , Animales , Eucalyptus/parasitología , Femenino , Herbivoria , Oviposición , Óvulo , Reguladores del Crecimiento de las Plantas/metabolismo , Avispas/fisiología
18.
Sci Rep ; 10(1): 15303, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943731

RESUMEN

Reproductive synchronicity within a seed orchard facilitates gene exchange and reduces self-fertilisation. Here we assessed key flowering traits, biomass and foliar 1,8-cineole concentrations of Eucalyptus loxophleba (subsp. lissophloia and gratiae) in an open-pollinated seed orchard. Monthly flowering observations were made on 1142 trees from 60 families and nine provenances across 2 years. The percentage of trees flowering in both years was similar at 87%. There were differences between provenances and families within provenances for flowering traits, biomass and 1,8-cineole and interactions between provenances and year for flowering traits. Heritability of start and end flowering, and 1,8-cineole were high to moderate ([Formula: see text] = 0.75-0.45) and duration of flowering, propensity to flower and biomass estimates were moderate to low ([Formula: see text] = 0.31-0.10). Genetic and phenotypic correlations between flowering traits were high (rg = 0.96-0.63 and rp = 0.93-0.34) except between duration and end of flowering. The correlations were weaker between flowering traits and biomass or 1,8-cineole. 'Dual flowering', when trees underwent two reproductive cycles in a year, was responsible for out-of-phase flowering and those with low biomass and 1,8-cineole concentration should be removed from the breeding programme to hasten selection for desirable traits.


Asunto(s)
Eucaliptol/metabolismo , Eucalyptus/genética , Eucalyptus/fisiología , Flores/genética , Flores/fisiología , Biomasa , Cruzamiento/métodos , Eucalyptus/metabolismo , Flores/metabolismo , Fenotipo , Polinización/genética , Polinización/fisiología , Reproducción/genética , Reproducción/fisiología , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Autofecundación/genética , Autofecundación/fisiología
19.
Plant Mol Biol ; 104(4-5): 339-357, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32638297

RESUMEN

Key Message A resistant E. grandis genotype showed a constitutive overexpression of genes related to resistance to myrtle rust caused by A. psidii. Abstract Myrtle rust caused by Austropuccinia psidii is considered one of the most important fungal diseases affecting Eucalyptus spp. plantations in Brazil. Although the selection and planting of resistant eucalypt genotypes have been the major strategies to manage the disease in Brazil, the molecular mechanisms involved in resistance are still unclear. In this study, we evaluated the gene expression profile of two contrasting Eucalyptus grandis genotypes in resistance level to rust by RNA-Seq. The two genotypes showed a very different background gene expression level even without A. psidii infection. The resistant genotype had a constitutive overexpression of a large number of protein-coding genes compared to the susceptible genotype. These genes were mainly associated with signal transduction, photosynthesis, regulation and response to salicylic acid (SA), and protein kinase leucine-rich receptors (PK-LRR). PK-LRR and SA mediated disease resistance are well known to be effective against obligate biotroph pathogens, such as A. psidii. In addition, at 24 h after infection, the susceptible genotype was able to activate some response, however, several resistance-related proteins had their expression level reduced with A. psidii infection. Here, we present the first analysis of E. grandis genotypes transcriptomes infected by A. psidii and it reveals a constitutive overexpression of several resistance-related genes in the resistant genotype compared to the susceptible one. Our findings have the potential to be used as candidate molecular markers for resistance to myrtle rust.


Asunto(s)
Basidiomycota/patogenicidad , Eucalyptus/genética , Eucalyptus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Brasil , Resistencia a la Enfermedad/genética , Eucalyptus/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Familia de Multigenes , Fotosíntesis/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Ácido Salicílico/metabolismo
20.
Plant Physiol Biochem ; 154: 316-327, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32593088

RESUMEN

The ability of plants to cope with frost events relies on the physiological and molecular responses triggered by cold temperatures. This process, named acclimation, involves reprogramming gene expression in order to adjust metabolism. Planted Eucalyptus species are highly productive but most of them are frost sensitive. However, acclimation process varies among species and environmental conditions, promoting more or less frost damage in young plantations of frost-prone areas. To identify metabolites and proteins responsible for these differences, two acclimation regimes were imposed to seedling of Eucalyptus grandis Hill ex Maiden (Eg), Eucalyptus dunnii Maiden (Ed) and Eucalyptus benthamii Maiden Cambage (Eb), and leaves submitted to biochemical and molecular analyses. Further, seedlings were used for simulated frosts in order to test the acclimation status effect on frost tolerance. Eb showed higher frost tolerance than Ed and Eg under control and acclimation scenarios, possibly due to its higher accumulation of phenolics, anthocyanins and soluble sugars as well as lower levels of photosynthetic pigments and related proteins. Also, a rise in frost tolerance and in osmoprotectants and antioxidants was observed for all the species due to cold acclimation treatment. Interestingly, metabolic profiles differed among species, suggesting different mechanisms to endure frosts and, probably, different requirements for cold acclimation. Shotgun proteomics reinforced differences and commonalities and supported metabolome observations. An in depth understanding of these responses could help to safeguard planted forests productivity through breeding of tolerant genetic material.


Asunto(s)
Aclimatación , Frío , Eucalyptus/fisiología , Congelación , Metaboloma , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...