Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316666

RESUMEN

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Asunto(s)
Archaea , Eucariontes , Filogenia , Archaea/clasificación , Archaea/citología , Archaea/genética , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Células Eucariotas/clasificación , Células Eucariotas/citología , Células Procariotas/clasificación , Células Procariotas/citología , Conjuntos de Datos como Asunto , Duplicación de Gen , Evolución Molecular
2.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207340

RESUMEN

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Asunto(s)
Euglenozoos , Ribosomas Mitocondriales , Euglenozoos/clasificación , Euglenozoos/citología , Euglenozoos/genética , Eucariontes/citología , Eucariontes/genética , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Ribosómico/metabolismo
3.
Nucleic Acids Res ; 51(2): 919-934, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36583339

RESUMEN

Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.


Asunto(s)
Subunidades Ribosómicas , Ribosomas , Eucariontes/citología , Biosíntesis de Proteínas , Subunidades Ribosómicas/genética , Ribosomas/metabolismo , Rotación , Células Procariotas , Fenómenos Biomecánicos
4.
Nature ; 613(7943): 332-339, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544020

RESUMEN

Asgard archaea are considered to be the closest known relatives of eukaryotes. Their genomes contain hundreds of eukaryotic signature proteins (ESPs), which inspired hypotheses on the evolution of the eukaryotic cell1-3. A role of ESPs in the formation of an elaborate cytoskeleton and complex cellular structures has been postulated4-6, but never visualized. Here we describe a highly enriched culture of 'Candidatus Lokiarchaeum ossiferum', a member of the Asgard phylum, which thrives anaerobically at 20 °C on organic carbon sources. It divides every 7-14 days, reaches cell densities of up to 5 × 107 cells per ml and has a significantly larger genome compared with the single previously cultivated Asgard strain7. ESPs represent 5% of its protein-coding genes, including four actin homologues. We imaged the enrichment culture using cryo-electron tomography, identifying 'Ca. L. ossiferum' cells on the basis of characteristic expansion segments of their ribosomes. Cells exhibited coccoid cell bodies and a network of branched protrusions with frequent constrictions. The cell envelope consists of a single membrane and complex surface structures. A long-range cytoskeleton extends throughout the cell bodies, protrusions and constrictions. The twisted double-stranded architecture of the filaments is consistent with F-actin. Immunostaining indicates that the filaments comprise Lokiactin-one of the most highly conserved ESPs in Asgard archaea. We propose that a complex actin-based cytoskeleton predated the emergence of the first eukaryotes and was a crucial feature in the evolution of the Asgard phylum by scaffolding elaborate cellular structures.


Asunto(s)
Citoesqueleto de Actina , Archaea , Eucariontes , Filogenia , Citoesqueleto de Actina/metabolismo , Actinas/clasificación , Actinas/genética , Actinas/metabolismo , Archaea/clasificación , Archaea/citología , Archaea/genética , Archaea/crecimiento & desarrollo , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/metabolismo , Anaerobiosis , Ribosomas/metabolismo , Estructuras de la Membrana Celular/metabolismo , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Evolución Molecular
5.
Cell ; 185(25): 4756-4769.e13, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493754

RESUMEN

Although adult pluripotent stem cells (aPSCs) are found in many animal lineages, mechanisms for their formation during embryogenesis are unknown. Here, we leveraged Hofstenia miamia, a regenerative worm that possesses collectively pluripotent aPSCs called neoblasts and produces manipulable embryos. Lineage tracing and functional experiments revealed that one pair of blastomeres gives rise to cells that resemble neoblasts in distribution, behavior, and gene expression. In Hofstenia, aPSCs include transcriptionally distinct subpopulations that express markers associated with differentiated tissues; our data suggest that despite their heterogeneity, aPSCs are derived from one lineage, not from multiple tissue-specific lineages during development. Next, we combined single-cell transcriptome profiling across development with neoblast cell-lineage tracing and identified a molecular trajectory for neoblast formation that includes transcription factors Hes, FoxO, and Tbx. This identification of a cellular mechanism and molecular trajectory for aPSC formation opens the door for in vivo studies of aPSC regulation and evolution.


Asunto(s)
Células Madre Adultas , Eucariontes , Células Madre Pluripotentes , Animales , Diferenciación Celular , Linaje de la Célula , Células Madre Pluripotentes/fisiología , Eucariontes/clasificación , Eucariontes/citología
6.
Proc Natl Acad Sci U S A ; 119(32): e2206216119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914133

RESUMEN

The eukaryotic genome is partitioned into distinct topological domains separated by boundary elements. Emerging data support the concept that several well-established nuclear compartments are ribonucleoprotein condensates assembled through the physical process of phase separation. Here, based on our demonstration that chemical disruption of nuclear condensate assembly weakens the insulation properties of a specific subset (∼20%) of topologically associated domain (TAD) boundaries, we report that the disrupted boundaries are characterized by a high level of transcription and striking spatial clustering. These topological boundary regions tend to be spatially associated, even interchromosomally, segregate with nuclear speckles, and harbor a specific subset of "housekeeping" genes widely expressed in diverse cell types. These observations reveal a previously unappreciated mode of genome organization mediated by conserved boundary elements harboring highly and widely expressed transcription units and associated transcriptional condensates.


Asunto(s)
Compartimento Celular , Núcleo Celular , Eucariontes , Ribonucleoproteínas , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas/genética , Eucariontes/citología , Eucariontes/genética , Genes Esenciales , Genoma/genética , Motas Nucleares/genética , Ribonucleoproteínas/metabolismo , Transcripción Genética
7.
Cells ; 10(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34831198

RESUMEN

Trogocytosis is a mode of internalization of a part of a live cell by nibbling and is mechanistically distinct from phagocytosis, which implies internalization of a whole cell or a particle. Trogocytosis has been demonstrated in a broad range of cell types in multicellular organisms and is also known to be involved in a plethora of functions. In immune cells, trogocytosis is involved in the "cross-dressing" between antigen presenting cells and T cells, and is thus considered to mediate intercellular communication. On the other hand, trogocytosis has also been reported in a variety of unicellular organisms including the protistan (protozoan) parasite Entamoeba histolytica. E. histolytica ingests human T cell line by trogocytosis and acquires complement resistance and cross-dresses major histocompatibility complex (MHC) class I on the cell surface. Furthermore, trogocytosis and trogocytosis-like phenomena (nibbling of a live cell, not previously described as trogocytosis) have also been reported in other parasitic protists such as Trichomonas, Plasmodium, Toxoplasma, and free-living amoebae. Thus, trogocytosis is conserved in diverse eukaryotic supergroups as a means of intercellular communication. It is depicting the universality of trogocytosis among eukaryotes. In this review, we summarize our current understanding of trogocytosis in unicellular organisms, including the history of its discovery, taxonomical distribution, roles, and molecular mechanisms.


Asunto(s)
Eucariontes/citología , Trogocitosis/fisiología , Animales , Entamoeba histolytica/citología , Modelos Biológicos , Parásitos/citología , Fagosomas/metabolismo
8.
Genes (Basel) ; 12(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34680926

RESUMEN

The emergence of multicellular organisms was, perhaps, the most spectacular of the major transitions during the evolutionary history of life on this planet [...].


Asunto(s)
Evolución Molecular , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Filogenia
9.
Eur J Protistol ; 80: 125808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34280731

RESUMEN

Percolomonads are common freshwater, marine and hypersaline tetraflagellated organisms. Current phylogenetic analyses of eukaryotes comprise only two species of this underinvestigated family. Here, we studied the morphology, salinity tolerance and 18S rDNA gene-based phylogeny of seven percolomonad cultures. We describe three new genera and five novel species of Percolomonadida based on phylogenetic distances and morphological characteristics: Barbelia atlantica, B. abyssalis, Lula jakobsenorum, Nakurumonas serrata and Percolomonas doradorae. The new species show features typical for percolomonads, one long flagellum for skidding, three shorter flagella of equal length and a ventral feeding groove. The new species comprise organisms living in marine and athalassic hypersaline waters with salinity ranging from 10 to 150 PSU. Based on these novel taxa, the taxonomy and phylogeny of Percolatea was extended and further resolved.


Asunto(s)
Biodiversidad , Eucariontes/clasificación , Filogenia , Agua de Mar/parasitología , Organismos Acuáticos/clasificación , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Eucariontes/citología , Eucariontes/genética , ARN Ribosómico 18S/genética , Especificidad de la Especie
10.
Artículo en Inglés | MEDLINE | ID: mdl-34196605

RESUMEN

A new family, genus and species of centrohelid heliozoans, Clypifer cribrifer gen. nov., sp. nov. (Clypiferidae fam. nov.), from the Gulf of Aqaba (Israel) was studied with light and electron microscopy and SSU rRNA gene sequencing. Clypifer cribrifer has only one type of scales, partially running up the sides of the axopodia. Plate scales [0.8-2.3 (av. 1.5)×0.6-1.8 (av. 1.2) µm] are flat, elliptical or circular, fenestrated with holes of irregular shape and have a marginal rim and a very short axial rib. The cell diameter is 3.9-9.6 (av. 6.0) µm. Molecular phylogenetic analysis robustly places C. cribrifer in the C4 clade for which the new family Clypiferidae is proposed here. This position is confirmed with the short sequences in the panacanthocystid increased regions. The morphology of the new genus has similarities to the genus Raphidocystis. The probability that another Clypifer species was described under a different name in the centrohelid literature is discussed. Clypiferidae represent the second lineage of Pterocystida, which are characterized by the presence of only tangentially oriented plate scales of one type. Possible ways of evolution of the centrohelid siliceous coverings are also discussed.


Asunto(s)
Eucariontes/clasificación , Eucariontes/citología , Israel , ARN Ribosómico/genética , Análisis de Secuencia de ADN
11.
Exp Cell Res ; 405(2): 112684, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129847

RESUMEN

Cytidine triphosphate synthase (CTPS) catalyzes the rate-limiting step of de novo CTP biosynthesis. An intracellular structure of CTPS, the cytoophidium, has been found in many organisms including prokaryotes and eukaryotes. Formation of the cytoophidium has been suggested to regulate the activity and stability of CTPS and may participate in certain physiological events. Herein, we demonstrate that both CTPS1a and CTPS1b in zebrafish are able to form the cytoophidium in cultured cells. A point mutation, H355A, abrogates cytoophidium assembly of zebrafish CTPS1a and CTPS1b. In addition, we show the presence of CTPS cytoophidia in multiple tissues of larval and adult fish under normal conditions, while treatment with a CTPS inhibitor 6-diazo-5-oxo-l-norleucine (DON) can induce more cytoophidia in some tissues. Our findings reveal that forming the CTPS cytoophidium is a natural phenomenon of zebrafish and provide valuable information for future research on the physiological importance of this intracellular structure in vertebrates.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Citidina Trifosfato/metabolismo , Eucariontes/citología , Células Procariotas/citología , Animales , Línea Celular , Óxido Nítrico Sintasa/metabolismo , Pez Cebra
12.
Curr Genet ; 67(6): 871-876, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34114051

RESUMEN

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.


Asunto(s)
Evolución Biológica , Eucariontes/fisiología , Evolución Clonal , Eucariontes/citología
13.
FEBS J ; 288(24): 7002-7024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33780127

RESUMEN

The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.


Asunto(s)
Péptidos Antimicrobianos/metabolismo , Eucariontes/metabolismo , Eucariontes/citología
14.
Biosystems ; 203: 104375, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33549602

RESUMEN

Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.


Asunto(s)
Archaea/citología , Núcleo Celular , Eucariontes/citología , Mitocondrias , Plastidios , Simbiosis , Citoesqueleto de Actina , Evolución Biológica , Biología Celular , Citoesqueleto , Combinación Trimetoprim y Sulfametoxazol , Tubulina (Proteína)
15.
Curr Top Dev Biol ; 141: 399-427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33602495

RESUMEN

Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.


Asunto(s)
Evolución Biológica , Eucariontes/citología , Gastrulación/fisiología , Simbiosis , Animales , Bacterias/citología , Biopelículas , Femenino , Microbioma Gastrointestinal , Sistema Inmunológico/microbiología , Masculino , Rumiantes/microbiología
16.
Trends Parasitol ; 37(5): 414-429, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33640269

RESUMEN

Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.


Asunto(s)
Parásitos , Parasitología , Técnicas de Placa-Clamp , Animales , Transporte Biológico , Membrana Celular/metabolismo , Eucariontes/citología , Eucariontes/fisiología , Parásitos/citología , Parásitos/fisiología , Parasitología/instrumentación , Parasitología/métodos , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/normas
17.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388743

RESUMEN

MOTIVATION: mRNA location corresponds to the location of protein translation and contributes to precise spatial and temporal management of the protein function. However, current assignment of subcellular localization of eukaryotic mRNA reveals important limitations: (1) turning multiple classifications into multiple dichotomies makes the training process tedious; (2) the majority of the models trained by classical algorithm are based on the extraction of single sequence information; (3) the existing state-of-the-art models have not reached an ideal level in terms of prediction and generalization ability. To achieve better assignment of subcellular localization of eukaryotic mRNA, a better and more comprehensive model must be developed. RESULTS: In this paper, SubLocEP is proposed as a two-layer integrated prediction model for accurate prediction of the location of sequence samples. Unlike the existing models based on limited features, SubLocEP comprehensively considers additional feature attributes and is combined with LightGBM to generated single feature classifiers. The initial integration model (single-layer model) is generated according to the categories of a feature. Subsequently, two single-layer integration models are weighted (sequence-based: physicochemical properties = 3:2) to produce the final two-layer model. The performance of SubLocEP on independent datasets is sufficient to indicate that SubLocEP is an accurate and stable prediction model with strong generalization ability. Additionally, an online tool has been developed that contains experimental data and can maximize the user convenience for estimation of subcellular localization of eukaryotic mRNA.


Asunto(s)
Modelos Genéticos , Proteínas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Máquina de Vectores de Soporte , Bases de Datos Genéticas , Eucariontes/citología , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Proteínas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
18.
Curr Opin Cell Biol ; 68: 55-63, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33049465

RESUMEN

The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.


Asunto(s)
Citoesqueleto de Actina/genética , Archaea/citología , Proteínas Arqueales/genética , Evolución Biológica , Células Eucariotas/citología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiología , Actinas/química , Actinas/genética , Animales , Archaea/química , Archaea/genética , Archaea/aislamiento & purificación , Proteínas Arqueales/química , Proteínas Arqueales/fisiología , Eucariontes/citología , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/química , Células Eucariotas/fisiología , Humanos , Metagenómica , Filogenia , Análisis de Secuencia de Proteína
19.
J Cell Physiol ; 236(5): 3244-3256, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33135190

RESUMEN

Lung cancer is the leading cause of cancer death worldwide. Although diagnostic methods and targeted drugs have been rapidly developed in recent years, the underlying molecular mechanisms in the pathogenesis of lung cancer remain enigmatic. The N6-methyladenosine (m6 A) modification is the most common modification of messenger RNA in eukaryotes and plays critical roles in many diseases, especially cancers. Ectopic m6 A modification is associated with human carcinogenesis, including lung cancer. The m6 A modification is mediated by methyltransferases (writers) and demethylases (erasers) and indirectly affects biological processes through the recruitment of specific reader proteins (readers). Many studies have shown that m6 A writers, erasers, and readers serve as specific and sensitive biomarkers for lung cancer diagnosis, prognosis, and therapy. This review summarizes recent studies on the biological functions of the m6 A modification in lung cancer and discusses the potential application of m6 A regulators in lung cancer diagnosis and therapeutics.


Asunto(s)
Carcinogénesis/genética , Neoplasias Pulmonares/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/genética , Progresión de la Enfermedad , Eucariontes/citología , Humanos , Metiltransferasas/genética
20.
Angew Chem Int Ed Engl ; 60(11): 5759-5765, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247502

RESUMEN

Cell surface engineering with functional polymers is an effective strategy to modulate cell activity. Here, a bio-palladium catalyzed polymerization strategy was developed for in situ synthesis of conjugated polymers on living cell surfaces. Through Sonagashira polymerization, photoactive polyphenyleneethynylene (PPE) is synthesized on the cell surface via cell-generated bio-Pd catalyst. The in situ formed PPE is identified by excellent light-harvest capacity and blue fluorescence on the surfaces of E. coli and C. pyrenoidosa. Besides imaging microbes for tracing the polymerization process, PPE also exhibits enhanced antibacterial activity against E. coli. It can also augment the ATP synthesis of C. pyrenoidosa through enlarging the light absorption and accelerating the cyclic electron transport of the algae. With this bio-metal catalyzed polymerization method, functional polymers can be synthesized in situ on the living cell surface.


Asunto(s)
Alquinos/síntesis química , Éteres/síntesis química , Paladio/química , Polímeros/síntesis química , Alquinos/química , Alquinos/metabolismo , Catálisis , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Éteres/química , Éteres/metabolismo , Eucariontes/química , Eucariontes/citología , Eucariontes/metabolismo , Paladio/metabolismo , Procesos Fotoquímicos , Polimerizacion , Polímeros/química , Polímeros/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA