Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 38(3): 1060-1074, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33185661

RESUMEN

Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.


Asunto(s)
Evolución Biológica , Implantación del Embrión , Euterios/genética , Interleucina-17/metabolismo , Zarigüeyas/metabolismo , Útero/metabolismo , Animales , Decidua/citología , Euterios/embriología , Femenino , Expresión Génica , Modelos Biológicos , Infiltración Neutrófila , Conejos , Células del Estroma
2.
Integr Comp Biol ; 60(3): 742-752, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32525521

RESUMEN

Embryo implantation is a hallmark of the female reproductive biology of eutherian (placental) mammals and does not exist in a sustainable form in any other vertebrate group. Implantation is the initial process that leads to a sustained fetal-maternal unit engendering a complex functional relationship between the mother and the embryo/fetus. The nature of this relationship is often portrayed as one of conflict between an aggressive embryo and a passive or defensive maternal organism. Recent progress in elucidating the evolutionary origin of eutherian pregnancy leads to a different picture. The emerging scenario suggests that the very initial stages in the evolution of embryo implantation required evolutionary changes to the maternal physiology which modified an ancestral generic mucosal inflammation in response to the presence of the embryo into an active embedding process. This "female-first" evolutionary scenario also explains the role of endometrial receptivity in human pregnancy. On the marsupial side, where in most animals the fetal-maternal interaction is short and does not lead to a long term sustainable placentation, the relationship is mutual. In these mammals, uterine inflammation is followed by parturition in short order. The inflammatory signaling pathways, however, are cooperative, i.e., they are performed by both the fetus and the mother and therefore we call this relationship "cooperative inflammation." Based on these discoveries we reconceive the narrative of the maternal-fetal relationship.


Asunto(s)
Evolución Biológica , Implantación del Embrión/fisiología , Embrión de Mamíferos/embriología , Euterios/embriología , Marsupiales/embriología , Animales , Femenino , Madres
3.
PLoS Biol ; 16(6): e2005293, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29953435

RESUMEN

Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These "molecular vestiges" provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters.


Asunto(s)
Euterios/embriología , Euterios/genética , Evolución Molecular , Insulina/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Testículo/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Euterios/clasificación , Gubernáculo/crecimiento & desarrollo , Masculino , Mutación , Filogenia , Talidomida/análogos & derivados
4.
Curr Top Dev Biol ; 128: 237-266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29477165

RESUMEN

Marsupials and monotremes differ from eutherian mammals in many features of their reproduction and development. Some features appear to be representative of transitional stages in evolution from therapsid reptiles to humans and mice, particularly with respect to the extraembryonic tissues that have undergone remarkable modifications to accommodate reduced egg size and quantity of yolk/deutoplasm, and increasing emphasis on viviparity and placentation. Trophoblast and hypoblast contribute the epithelial layers in most of the extraembryonic membranes and are the first two lineages to differentiate from the embryonic lineage. How they are specified varies greatly among mammals, perhaps largely due to heterochrony in the stage at which they must function. Differences probably also exist in the stage at which lineages are specified relative to the stage at which they fully commit to differentiation. The dogma of sequential commitment to trophoblast and hypoblast with progressive loss of potency may not be a fundamental feature of early mammalian development, but merely a recently acquired developmental pattern in eutherians, or at least mice.


Asunto(s)
Euterios/embriología , Gástrula/embriología , Animales , Tipificación del Cuerpo , Estratos Germinativos/citología , Modelos Biológicos , Trofoblastos/citología
5.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28490626

RESUMEN

A central question in the evolution of brain development is whether species differ in rates of brain growth during fetal neurogenesis. Studies of neonatal data have found allometric evidence for brain growth rate differences according to physiological variables such as relative metabolism and placental invasiveness, but these findings have not been tested against fetal data directly. Here, we measure rates of exponential brain growth acceleration in 10 eutherian mammals, two marsupials, and two birds. Eutherian brain acceleration exhibits minimal variation relative to body and visceral organ growth, varies independently of correlated growth patterns in other organs, and is unrelated to proposed physiological constraints such as metabolic rate or placental invasiveness. Brain growth rates in two birds overlap with eutherian variation, while marsupial brain growth is exceptionally slow. Peak brain growth velocity is linked in time with forebrain myelination and eye opening, reliably separates altricial species born before it from precocial species born afterwards, and is an excellent predictor of adult brain size (r2 = 0.98). Species with faster body growth exhibit larger relative brain size in early ontogeny, while brain growth is unrelated to allometric measures. These findings indicate a surprising conservation of brain growth rates during fetal neurogenesis in eutherian mammals, clarify sources of variation in neonatal brain size, and suggest that slow body growth rates cause species to be more encephalized at birth.


Asunto(s)
Encéfalo/embriología , Euterios/embriología , Neurogénesis , Animales , Aves/embriología , Marsupiales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA