Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Asian Pac J Cancer Prev ; 23(1): 207-215, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092390

RESUMEN

Ribonucleases (RNases) is the collective term used for the group of enzymes that are involved in mRNA degradation. The shortening of the poly (A) tail through deadenylation is the preferred mechanism of degradation of most eukaryotic mRNAs and poly (A)-specific ribonuclease (PARN) is the most important player in deadenylation.  Besides its primarily role in mRNA stability, PARN is also involved in several non-conventional functions. It is conceivable that a decreased RNase activity can alter the stability of cancer-associated mRNAs and this alteration may be differential in cells of different origin. METHODS: The effects of siRNA-mediated knockdown of PARN on the post-transcriptional expression of 16 oncogenes and 18 tumor suppressor genes in cells derived from different lineages (NCI-H460 and NCI-H522; lung cancer) and (HEK-293; kidney) were investigated. Further, the effects of PARN depletion on proliferation and death of the lung cancer cells were investigated. RESULTS: Quantitative real time PCR analysis revealed an cell-specific alteration in the expression of the target onco and tumor suppressor genes upon PARN depletion, differently, for cells derived from different lineages. The tumor suppressor genes showed a consistent pattern of down regulation upon PARN depletion in all the three cell types tested. In contrast, the expression of oncogenes was not consistent; while some oncogenes showed overexpression in HEK 293 cells, the majority of them were downregulated in the lung cancer cells. Further, PARN depletion did not alter the proliferation of lung cancer cells, which was in contrast to previous reports. CONCLUSION: The results of this study reveal that PARN deficiency leads to an altered stability of cancer-associated mRNA, distinctly, in cells of different lineages. Despite previous reports suggesting a potential therapeutic role of PARN in cancer, our results suggest that PARN may not be an important biomarker, particularly in lung cancer.


Asunto(s)
Exorribonucleasas/deficiencia , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Oncogenes
2.
RNA ; 27(10): 1265-1280, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34266995

RESUMEN

XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.


Asunto(s)
Neoplasias Óseas/genética , Exorribonucleasas/genética , Proteínas Asociadas a Microtúbulos/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Niño , Biología Computacional , Exorribonucleasas/deficiencia , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Asociadas a Microtúbulos/deficiencia , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo
3.
Nat Commun ; 11(1): 2619, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457326

RESUMEN

DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3'-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Exorribonucleasas/metabolismo , Macrosomía Fetal/microbiología , ARN Mensajero/metabolismo , Tumor de Wilms/microbiología , Animales , Señalización del Calcio/genética , Diferenciación Celular , Células Madre Embrionarias , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Macrosomía Fetal/enzimología , Macrosomía Fetal/genética , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Ratones , Biosíntesis de Proteínas , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Uridina Monofosfato/metabolismo , Tumor de Wilms/enzimología , Tumor de Wilms/genética
4.
EMBO Mol Med ; 11(7): e10201, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31273937

RESUMEN

PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.


Asunto(s)
Disqueratosis Congénita/metabolismo , Exorribonucleasas/deficiencia , Retardo del Crecimiento Fetal/metabolismo , Discapacidad Intelectual/metabolismo , Microcefalia/metabolismo , ARN Ribosómico/biosíntesis , Homeostasis del Telómero , Telómero/metabolismo , Animales , Preescolar , Modelos Animales de Enfermedad , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Exorribonucleasas/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Noqueados , Microcefalia/genética , Microcefalia/patología , ARN Ribosómico/genética , Complejo Shelterina , Telómero/genética , Telómero/patología , Proteínas de Unión a Telómeros
5.
Cell Rep ; 26(10): 2779-2791.e5, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840897

RESUMEN

Cell-based studies of human ribonucleases traditionally rely on methods that deplete proteins slowly. We engineered cells in which the 3'→5' exoribonucleases of the exosome complex, DIS3 and EXOSC10, can be rapidly eliminated to assess their immediate roles in nuclear RNA biology. The loss of DIS3 has the greatest impact, causing the substantial accumulation of thousands of transcripts within 60 min. These transcripts include enhancer RNAs, promoter upstream transcripts (PROMPTs), and products of premature cleavage and polyadenylation (PCPA). These transcripts are unaffected by the rapid loss of EXOSC10, suggesting that they are rarely targeted to it. More direct detection of EXOSC10-bound transcripts revealed its substrates to prominently include short 3' extended ribosomal and small nucleolar RNAs. Finally, the 5'→3' exoribonuclease, XRN2, has little activity on exosome substrates, but its elimination uncovers different mechanisms for the early termination of transcription from protein-coding gene promoters.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Nuclear/metabolismo , ARN/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/deficiencia , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , ARN/genética , ARN Nuclear/genética , Transcripción Genética
6.
Methods ; 155: 10-19, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30395968

RESUMEN

Post-transcriptional modification of RNA, the so-called 'Epitranscriptome', can regulate RNA structure, stability, localization, and function. Numerous modifications have been identified in virtually all classes of RNAs, including messenger RNAs (mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs (miRNAs), and other noncoding RNAs (ncRNAs). These modifications may occur internally (by base or sugar modifications) and include RNA methylation at different nucleotide positions, or by the addition of various nucleotides at the 3'-end of certain transcripts by a family of terminal nucleotidylyl transferases. Developing methods to specifically and accurately detect and map these modifications is essential for understanding the molecular function(s) of individual RNA modifications and also for identifying and characterizing the proteins that may read, write, or erase them. Here, we focus on the characterization of RNA species targeted by 3' terminal uridylyl transferases (TUTases) (TUT4/7, also known as Zcchc11/6) and a 3'-5' exoribonuclease, Dis3l2, in the recently identified Dis3l2-mediated decay (DMD) pathway - a dedicated quality control pathway for a subset of ncRNAs. We describe the detailed methods used to precisely identify 3'-end modifications at nucleotide level resolution with a particular focus on the U1 and U2 small nuclear RNA (snRNA) components of the Spliceosome. These tools can be applied to investigate any RNA of interest and should facilitate studies aimed at elucidating the functional relevance of 3'-end modifications.


Asunto(s)
Biología Computacional/métodos , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Uridina/metabolismo , Región de Flanqueo 3' , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Edición Génica/métodos , Ratones , Células Madre Embrionarias de Ratones , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
7.
J Biol Chem ; 293(42): 16242-16260, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30171071

RESUMEN

The 3'-5' exoribonuclease Rrp6 is a key enzyme in RNA homeostasis involved in processing and degradation of many stable RNA precursors, aberrant transcripts, and noncoding RNAs. We previously have shown that in the protozoan parasite Entamoeba histolytica, the 5'-external transcribed spacer fragment of pre-rRNA accumulates under serum starvation-induced growth stress. This fragment is a known target of degradation by Rrp6. Here, we computationally and biochemically characterized EhRrp6 and found that it contains the catalytically important EXO and HRDC domains and exhibits exoribonuclease activity with both unstructured and structured RNA substrates, which required the conserved DEDD-Y catalytic-site residues. It lacked the N-terminal PMC2NT domain for binding of the cofactor Rrp47, but could functionally complement the growth defect of a yeast rrp6 mutant. Of note, no Rrp47 homologue was detected in E. histolytica Immunolocalization studies revealed that EhRrp6 is present both in the nucleus and cytosol of normal E. histolytica cells. However, growth stress induced its complete loss from the nuclei, reversed by proteasome inhibitors. EhRrp6-depleted E. histolytica cells were severely growth restricted, and EhRrp6 overexpression protected the cells against stress, suggesting that EhRrp6 functions as a stress sensor. Importantly EhRrp6 depletion reduced erythrophagocytosis, an important virulence determinant of E. histolytica This reduction was due to a specific decrease in transcript levels of some phagocytosis-related genes (Ehcabp3 and Ehrho1), whereas expression of other genes (Ehcabp1, Ehcabp6, Ehc2pk, and Eharp2/3) was unaffected. This is the first report of the role of Rrp6 in cell growth and stress responses in a protozoan parasite.


Asunto(s)
Entamoeba histolytica/enzimología , Exorribonucleasas/fisiología , Fagocitosis/genética , Dominio Catalítico , Núcleo Celular/enzimología , Entamoeba histolytica/crecimiento & desarrollo , Entamoeba histolytica/patogenicidad , Eritrocitos/inmunología , Exorribonucleasas/deficiencia , Regulación de la Expresión Génica
8.
Nature ; 560(7717): 238-242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046113

RESUMEN

Mitochondria are descendants of endosymbiotic bacteria and retain essential prokaryotic features such as a compact circular genome. Consequently, in mammals, mitochondrial DNA is subjected to bidirectional transcription that generates overlapping transcripts, which are capable of forming long double-stranded RNA structures1,2. However, to our knowledge, mitochondrial double-stranded RNA has not been previously characterized in vivo. Here we describe the presence of a highly unstable native mitochondrial double-stranded RNA species at single-cell level and identify key roles for the degradosome components mitochondrial RNA helicase SUV3 and polynucleotide phosphorylase PNPase in restricting the levels of mitochondrial double-stranded RNA. Loss of either enzyme results in massive accumulation of mitochondrial double-stranded RNA that escapes into the cytoplasm in a PNPase-dependent manner. This process engages an MDA5-driven antiviral signalling pathway that triggers a type I interferon response. Consistent with these data, patients carrying hypomorphic mutations in the gene PNPT1, which encodes PNPase, display mitochondrial double-stranded RNA accumulation coupled with upregulation of interferon-stimulated genes and other markers of immune activation. The localization of PNPase to the mitochondrial inter-membrane space and matrix suggests that it has a dual role in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This in turn prevents the activation of potent innate immune defence mechanisms that have evolved to protect vertebrates against microbial and viral attack.


Asunto(s)
Herpesvirus Humano 1/inmunología , ARN Bicatenario/inmunología , ARN Mitocondrial/inmunología , Animales , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica/inmunología , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/metabolismo , Mutación , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Análisis de la Célula Individual , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
Nature ; 539(7630): 588-592, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27851737

RESUMEN

Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Endorribonucleasas/deficiencia , Endorribonucleasas/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/metabolismo , Femenino , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Transcripción Genética
10.
Cell Rep ; 16(7): 1861-73, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27498873

RESUMEN

Mutations in the 3'-5' exonuclease DIS3L2 are associated with Perlman syndrome and hypersusceptibility to Wilms tumorigenesis. Previously, we found that Dis3l2 specifically recognizes and degrades uridylated pre-let-7 microRNA. However, the widespread relevance of Dis3l2-mediated decay of uridylated substrates remains unknown. Here, we applied an unbiased RNA immunoprecipitation strategy to identify Dis3l2 targets in mouse embryonic stem cells. The disease-associated long noncoding RNA (lncRNA) Rmrp, 7SL, as well as several other Pol III-transcribed noncoding RNAs (ncRNAs) were among the most highly enriched Dis3l2-bound RNAs. 3'-Uridylated Rmrp, 7SL, and small nuclear RNA (snRNA) species were highly stabilized in the cytoplasm of Dis3l2-depleted cells. Deep sequencing analysis of Rmrp 3' ends revealed extensive oligouridylation mainly on transcripts with imprecise ends. We implicate the terminal uridylyl transferases (TUTases) Zcchc6/11 in the uridylation of these ncRNAs, and biochemical reconstitution assays demonstrate the sufficiency of TUTase-Dis3l2 for Rmrp decay. This establishes Dis3l2-mediated decay (DMD) as a quality-control pathway that eliminates aberrant ncRNAs.


Asunto(s)
Exorribonucleasas/genética , MicroARNs/genética , División del ARN , ARN Citoplasmático Pequeño/genética , ARN no Traducido/genética , Partícula de Reconocimiento de Señal/genética , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Exorribonucleasas/deficiencia , Edición Génica , Regulación de la Expresión Génica , Humanos , Inmunoprecipitación , Ratones , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN Citoplasmático Pequeño/metabolismo , ARN no Traducido/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transducción de Señal , Uridina/metabolismo
11.
Plant Cell Physiol ; 56(9): 1762-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136597

RESUMEN

mRNA degradation plays an important role in the rapid and dynamic alteration of gene expression in response to environmental stimuli. Arabidopsis 5'-3' exoribonuclease (AtXRN4), a homolog of yeast Xrn1p, functions after a de-capping step in the degradation of uncapped RNAs. While Xrn1p-dependent degradation of mRNA is the main process of mRNA decay in yeast, information pertaining to the targets of XRN4-based degradation in plants is limited. In order to better understand the biological function of AtXRN4, the current study examined the survivability of atxrn4 mutants subjected to heat stress. The results indicated that atxrn4 mutants, compared with wild-type plants, exhibited an increased survival rate when subjected to a short-term severe heat stress. A microarray and mRNA decay assay showed that loss of AtXRN4 function caused a reduction in the degradation of heat shock factor A2 (HSFA2) and ethylene response factor 1 (ERF1) mRNA. The heat stress tolerance phenotype of atxrn4 mutants was significantly reduced or lost by mutation of HSFA2, a known key regulator of heat acclimation, thus indicating that HSFA2 is a target gene of AtXRN4-mediated mRNA degradation both under non-stress conditions and during heat acclimation. These results demonstrate that AtXRN4-mediated mRNA degradation is linked to the suppression of heat acclimation.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/enzimología , Arabidopsis/fisiología , Exorribonucleasas/metabolismo , Respuesta al Choque Térmico , Calor , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Aclimatación , Arabidopsis/genética , Exorribonucleasas/deficiencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación/genética , Transpiración de Plantas/fisiología , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Clin Invest ; 125(5): 1796-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893598

RESUMEN

Dyskeratosis congenita (DC) is an inherited BM failure disorder that is associated with mutations in genes involved with telomere function and maintenance; however, the genetic cause of many instances of DC remains uncharacterized. In this issue of the JCI, Tummala and colleagues identify mutations in the gene encoding the poly(A)-specific ribonuclease (PARN) in individuals with a severe form of DC in three different families. PARN deficiency resulted in decreased expression of genes required for telomere maintenance and an aberrant DNA damage response, including increased levels of p53. Together, the results of this study support PARN as a DC-associated gene and suggest a potential link between p53 and telomere shortening.


Asunto(s)
Disqueratosis Congénita/genética , Exorribonucleasas/deficiencia , Mutación , Homeostasis del Telómero/genética , Femenino , Humanos , Masculino
14.
J Clin Invest ; 125(5): 2151-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893599

RESUMEN

Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.


Asunto(s)
Disqueratosis Congénita/genética , Exorribonucleasas/deficiencia , Mutación , Homeostasis del Telómero/genética , Alelos , Células Cultivadas , Niño , Preescolar , Consanguinidad , Daño del ADN , Regulación hacia Abajo , Exoma/genética , Exorribonucleasas/genética , Exorribonucleasas/fisiología , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Modelos Moleculares , Mutación Missense , Pakistán/etnología , Linaje , Fenotipo , Conformación Proteica , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , ARN Interferente Pequeño/farmacología , Eliminación de Secuencia
15.
Biochim Biophys Acta ; 1853(2): 522-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25499764

RESUMEN

Regulation of mRNA decay plays a crucial role in the post-transcriptional control of cell growth, survival, differentiation, death and senescence. Deadenylation is a rate-limiting step in the silence and degradation of the bulk of highly regulated mRNAs. However, the physiological functions of various deadenylases have not been fully deciphered. In this research, we found that poly(A)-specific ribonuclease (PARN) was upregulated in gastric tumor tissues and gastric cancer cell lines MKN28 and AGS. The cellular function of PARN was investigated by stably knocking down the endogenous PARN in the MKN28 and AGS cells. Our results showed that PARN-depletion significantly inhibited the proliferation of the two types of gastric cancer cells and promoted cell death, but did not significantly affect cell motility and invasion. The depletion of PARN arrested the gastric cancer cells at the G0/G1 phase by upregulating the expression levels of p53 and p21 but not p27. The mRNA stability of p53 was unaffected by PARN-knockdown in both types of cells. A significant stabilizing effect of PARN-depletion on p21 mRNA was observed in the AGS cells but not in the MKN28 cells. We further showed that the p21 3'-UTR triggered the action of PARN in the AGS cells. The dissimilar observations between the MKN28 and AGS cells as well as various stress conditions suggested that the action of PARN strongly relied on protein expression profiles of the cells, which led to heterogeneity in the stability of PARN-targeted mRNAs.


Asunto(s)
Ciclo Celular , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología , Muerte Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Gránulos Citoplasmáticos/metabolismo , Daño del ADN , Exorribonucleasas/deficiencia , Exorribonucleasas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Poli A/metabolismo , Estabilidad Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Gástricas/genética , Regulación hacia Arriba/genética
16.
Nature ; 513(7518): 431-5, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25043062

RESUMEN

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.


Asunto(s)
Exorribonucleasas/metabolismo , Silenciador del Gen , Genes Protozoarios/genética , Malaria Cerebral/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , ARN Protozoario/metabolismo , Alelos , Variación Antigénica/genética , Cromatina/enzimología , Regulación hacia Abajo/genética , Eritrocitos/parasitología , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Humanos , Intrones/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sitio de Iniciación de la Transcripción , Virulencia/genética , Factores de Virulencia/genética
17.
PLoS One ; 8(10): e76284, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143183

RESUMEN

Human Polynucleotide Phosphorylase (hPNPase(old-35) or PNPT1) is an evolutionarily conserved 3'→ 5' exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPase(old-35) in cellular physiology, we knocked-down and overexpressed hPNPase(old-35) in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPase(old-35) resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPase(old-35) caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPase(old-35) knockdown and overexpression datasets allowed us to identify 77 potential "direct" and 61 potential "indirect" targets of hPNPase(old-35) which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPase(old-35) expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.


Asunto(s)
Exorribonucleasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/patología , Adenoviridae/genética , Línea Celular Tumoral , Clonación Molecular , ADN Complementario/genética , Bases de Datos Genéticas , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/genética
18.
J Biol Chem ; 287(31): 26155-66, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22679025

RESUMEN

DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3' end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Secuencia de Bases , Núcleo Celular/enzimología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/fisiología , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Técnicas de Silenciamiento del Gen , Genes Fúngicos , Secuencias Invertidas Repetidas , Familia de Multigenes , Sistemas de Lectura Abierta , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
19.
Nature ; 475(7354): 114-7, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697827

RESUMEN

Non-coding (nc)RNAs are key players in numerous biological processes such as gene regulation, chromatin domain formation and genome stability. Large ncRNAs interact with histone modifiers and are involved in cancer development, X-chromosome inactivation and autosomal gene imprinting. However, despite recent evidence showing that pervasive transcription is more widespread than previously thought, only a few examples mediating gene regulation in eukaryotes have been described. In Saccharomyces cerevisiae, the bona-fide regulatory ncRNAs are destabilized by the Xrn1 5'-3' RNA exonuclease (also known as Kem1), but the genome-wide characterization of the entire regulatory ncRNA family remains elusive. Here, using strand-specific RNA sequencing (RNA-seq), we identify a novel class of 1,658 Xrn1-sensitive unstable transcripts (XUTs) in which 66% are antisense to open reading frames. These transcripts are polyadenylated and RNA polymerase II (RNAPII)-dependent. The majority of XUTs strongly accumulate in lithium-containing media, indicating that they might have a role in adaptive responses to changes in growth conditions. Notably, RNAPII chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) analysis of Xrn1-deficient strains revealed a significant decrease of RNAPII occupancy over 273 genes with antisense XUTs. These genes show an unusual bias for H3K4me3 marks and require the Set1 histone H3 lysine 4 methyl-transferase for silencing. Furthermore, abolishing H3K4me3 triggers the silencing of other genes with antisense XUTs, supporting a model in which H3K4me3 antagonizes antisense ncRNA repressive activity. Our results demonstrate that antisense ncRNA-mediated regulation is a general regulatory pathway for gene expression in S. cerevisiae.


Asunto(s)
Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Estabilidad del ARN , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Inmunoprecipitación de Cromatina , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Silenciador del Gen , Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Litio/farmacología , Litio/toxicidad , Metilación , Sistemas de Lectura Abierta/genética , ARN Polimerasa II/metabolismo , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN sin Sentido/genética , ARN de Hongos/clasificación , ARN de Hongos/genética , ARN no Traducido/clasificación , ARN no Traducido/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
20.
J Neurosci ; 30(12): 4232-40, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20335458

RESUMEN

Mitofusins (Mfn1 and Mfn2) are outer mitochondrial membrane proteins involved in regulating mitochondrial dynamics. Mutations in Mfn2 cause Charcot-Marie-Tooth disease (CMT) type 2A, an inherited disease characterized by degeneration of long peripheral axons, but the nature of this tissue selectivity remains unknown. Here, we present evidence that Mfn2 is directly involved in and required for axonal mitochondrial transport, distinct from its role in mitochondrial fusion. Live imaging of neurons cultured from Mfn2 knock-out mice or neurons expressing Mfn2 disease mutants shows that axonal mitochondria spend more time paused and undergo slower anterograde and retrograde movements, indicating an alteration in attachment to microtubule-based transport systems. Furthermore, Mfn2 disruption altered mitochondrial movement selectively, leaving transport of other organelles intact. Importantly, both Mfn1 and Mfn2 interact with mammalian Miro (Miro1/Miro2) and Milton (OIP106/GRIF1) proteins, members of the molecular complex that links mitochondria to kinesin motors. Knockdown of Miro2 in cultured neurons produced transport deficits identical to loss of Mfn2, indicating that both proteins must be present at the outer membrane to mediate axonal mitochondrial transport. In contrast, disruption of mitochondrial fusion via knockdown of the inner mitochondrial membrane protein Opa1 had no effect on mitochondrial motility, indicating that loss of fusion does not inherently alter mitochondrial transport. These experiments identify a role for mitofusins in directly regulating mitochondrial transport and offer important insight into the cell type specificity and molecular mechanisms of axonal degeneration in CMT2A and dominant optic atrophy.


Asunto(s)
Transporte Axonal/fisiología , Axones/ultraestructura , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Aminoácidos/genética , Animales , Transporte Axonal/genética , Axones/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , GTP Fosfohidrolasas , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación/métodos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA