Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.520
Filtrar
1.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725844

RESUMEN

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Asunto(s)
Neoplasias Colorrectales , Exosomas , ARN Largo no Codificante , beta Catenina , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , beta Catenina/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Estabilidad del ARN/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Animales , Ratones , Proliferación Celular/genética , Ratones Desnudos
2.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725860

RESUMEN

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Asunto(s)
Glioblastoma , Factor de Transcripción STAT3 , Transducción de Señal , Tetraspaninas , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Factor de Transcripción STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Animales , Proliferación Celular/genética , Exosomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones
3.
Front Immunol ; 15: 1395332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726017

RESUMEN

PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.


Asunto(s)
Antígeno B7-H1 , Exosomas , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Exosomas/metabolismo , Exosomas/inmunología , Microambiente Tumoral/inmunología , Animales , Inmunoterapia/métodos , Transducción de Señal , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Biomarcadores de Tumor
4.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724995

RESUMEN

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Asunto(s)
Células Epiteliales , Exosomas , MicroARNs , Prostatitis , Células del Estroma , Masculino , Exosomas/metabolismo , Prostatitis/genética , Prostatitis/patología , Prostatitis/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Animales , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Próstata/patología , Próstata/metabolismo , Dolor Pélvico , Inflamación/genética , Inflamación/patología , Ratones , Sistema de Señalización de MAP Quinasas
5.
Cells ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38727297

RESUMEN

Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Fusión Vertebral , Animales , Exosomas/metabolismo , Exosomas/trasplante , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Fusión Vertebral/métodos , Ratas , Osteogénesis/efectos de los fármacos , Fosfatos de Calcio/farmacología , Masculino , Humanos , Andamios del Tejido/química , Proteína Morfogenética Ósea 2/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
6.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38725341

RESUMEN

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Asunto(s)
Enterovirus Humano B , Exosomas , Ferroptosis , Células Madre Mesenquimatosas , MicroARNs , Miocitos Cardíacos , Transducción de Señal , Proteína Smad2 , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Exosomas/metabolismo , Animales , Humanos , Ratones , Proteína Smad2/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Enterovirus Humano B/fisiología , Miocitos Cardíacos/metabolismo , Cordón Umbilical/citología , Infecciones por Coxsackievirus/metabolismo , Masculino , Miocarditis/metabolismo , Miocarditis/virología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731840

RESUMEN

Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Exosomas , Microambiente Tumoral , Humanos , Exosomas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/diagnóstico , Femenino , Biomarcadores de Tumor/metabolismo , Pronóstico , Comunicación Celular , Resistencia a Antineoplásicos , Sistemas de Liberación de Medicamentos/métodos , Animales
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731977

RESUMEN

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Asunto(s)
Movimiento Celular , Proliferación Celular , Exosomas , Queratinocitos , Células Madre Mesenquimatosas , Gelatina de Wharton , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Gelatina de Wharton/citología , Gelatina de Wharton/metabolismo , Queratinocitos/metabolismo , Queratinocitos/citología , Fibrinógeno/metabolismo , Proteómica/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Cultivadas , Cicatrización de Heridas , Proteoma/metabolismo
9.
Mol Genet Genomics ; 299(1): 50, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734849

RESUMEN

Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.


Asunto(s)
Exosomas , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/sangre , Exosomas/genética , Exosomas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Hemorragia Intracraneal Hipertensiva/genética , Hemorragia Intracraneal Hipertensiva/sangre , Biomarcadores/sangre , Biología Computacional/métodos , Perfilación de la Expresión Génica , Hemorragia Cerebral/genética , Hemorragia Cerebral/sangre , Redes Reguladoras de Genes
10.
Hum Vaccin Immunother ; 20(1): 2345940, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38714324

RESUMEN

Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra el Cáncer , Exosomas , Exosomas/inmunología , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra el Cáncer/inmunología , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Neoplasias/inmunología , Animales , Desarrollo de Vacunas
11.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745186

RESUMEN

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Asunto(s)
Exosomas , Galectina 3 , Macrófagos , Naftoquinonas , Neoplasias Ováricas , beta Catenina , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Humanos , Exosomas/metabolismo , Animales , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , beta Catenina/metabolismo , Galectina 3/metabolismo , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones SCID
12.
Signal Transduct Target Ther ; 9(1): 107, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38697972

RESUMEN

Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.


Asunto(s)
Colangiocarcinoma , Exosomas , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/sangre , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangre , Colangiocarcinoma/patología , Exosomas/genética , Masculino , Femenino , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/sangre , Neoplasias de los Conductos Biliares/patología , Pronóstico , Colestasis/genética , Colestasis/diagnóstico , Colestasis/sangre
13.
Pediatr Surg Int ; 40(1): 118, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698156

RESUMEN

PURPOSE: We aimed to examine the effectiveness of mother milk exosomes in treating corrosive esophageal burns. MATERIALS AND METHODS: 32 rats were separated into four equal groups and weighed individually before the procedure. A corrosive esophageal burn model was created with 12.5% sodium hydroxide by a 3F Fogarty catheter. Group 1 did not apply any process or treatment, Group 2 was burned, and no treatment was performed. Group 3 was burned, and then 0.5 cc/day of mother milk exosome extract was given. Group 4 was not applied any process, and 0.5 cc/day mother milk exosome extract was given. All rats were weighed again and sacrificed. Biopsy samples were sent to the pathology laboratory for histopathological examination (in terms of inflammation, fibrosis, and necrosis).Kindly check and confrm all email ids.The e-mail addresses and affiliation of all authors were checked. Affiliation departments are as stated on the title page. There is no change. RESULTS: A significant difference was found in the results of inflammation and fibrosis. There was a meaningful difference in fibrosis between the 2nd and 3rd groups. There was weight gain in groups 1, 3 and 4. Statistical evaluations for each group were significant. CONCLUSION: It was observed that breast milk exosomes may be effective in inflammation and fibrosis formation in treating corrosive esophageal burns. This suggested that breast milk exosomes reduce stricture formation due to esophageal corrosion.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct.The names and affiliation of all authors were checked. Affiliation departments are as stated on the title page. There is no change. Also we confirm the details in the metadata.


Asunto(s)
Quemaduras Químicas , Modelos Animales de Enfermedad , Exosomas , Animales , Ratas , Quemaduras Químicas/terapia , Esofagitis/inducido químicamente , Esofagitis/patología , Cáusticos/toxicidad , Leche Humana , Femenino , Hidróxido de Sodio/toxicidad , Esófago/patología , Masculino
14.
Stem Cell Res Ther ; 15(1): 129, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693588

RESUMEN

BACKGROUND: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS: Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS: We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION: EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Endometrio , Exosomas , Fibroblastos , Células Madre Mesenquimatosas , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Femenino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Exosomas/metabolismo , Endometrio/metabolismo , Endometrio/citología , Fibroblastos/metabolismo , Fibroblastos/citología , Regeneración/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
15.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698449

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Asunto(s)
Diferenciación Celular , Exosomas , Células Madre Mesenquimatosas , Células de Schwann , Exosomas/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Ratas , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratas Sprague-Dawley , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo
16.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742566

RESUMEN

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Asunto(s)
Progresión de la Enfermedad , Exosomas , Proteínas Activadoras de GTPasa , MicroARNs , Osteosarcoma , ARN Circular , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Exosomas/metabolismo , Exosomas/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Proliferación Celular , Ratones , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino
17.
Elife ; 132024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743056

RESUMEN

Mutations in the gene for ß-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.


Asunto(s)
Escape del Tumor , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Exosomas/inmunología , Exosomas/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Mutación , Sistema Inmunológico/inmunología , Neoplasias/inmunología , Neoplasias/genética
18.
Sci Rep ; 14(1): 10964, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744871

RESUMEN

Due to vincristine sulfate's (VCR sulfate) toxicity and non-specific targeting, which might adversely damage healthy cells, its clinical application is restricted. In this study, we loaded VCR sulfate on exosomes generated from mesenchymal stem cells (MSCs) to enhance its targeted distribution. Exosomes are able to deliver molecules to specific cells and tissues and have therapeutic potential. In this study, we isolated exosomes from MSCs, and using probe-sonication approach loaded them with VCR sulfate. Using SRB assay, the cytotoxicity of VCR sulfate-Exo was assessed in T47D breast cancer cells, and the results were contrasted with those of free VCR sulfate. Then We labeled markers (CD44+/CD24-) in the cell line to assess the targeting effectiveness of VCR sulfate-Exo using flow cytometry. Our results showed that the cytotoxicity of VCR sulfate-Exo was nearly the same as that of VCR sulfate. Flow cytometry analysis revealed that VRC sulfate-Exo was more effectively targeted to MSCs than free VCR sulfate. Our study shows that loading VCR sulfate to MSCs-derived exosomes can improve their targeted delivery and lessen their side effects. Additional research is required to determine VCR sulfate-Exo's in vivo effectiveness and safety and improve the loading and delivery strategies.


Asunto(s)
Neoplasias de la Mama , Exosomas , Células Madre Mesenquimatosas , Células Madre Neoplásicas , Vincristina , Exosomas/metabolismo , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Vincristina/farmacología , Portadores de Fármacos/química
19.
J Transl Med ; 22(1): 427, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711144

RESUMEN

BACKGROUND: Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS: The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS: The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS: This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , ARN Circular , Exosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , ARN Circular/genética , ARN Circular/sangre , ARN Circular/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Ratones Desnudos , Persona de Mediana Edad , Ratones Endogámicos BALB C , Curva ROC , Ratones
20.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711329

RESUMEN

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Exosomas , Vesículas Extracelulares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Termotolerancia , Saccharomyces cerevisiae/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...