Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
Int J Nanomedicine ; 19: 3773-3804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708181

RESUMEN

Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.


Asunto(s)
Exosomas , Hidrogeles , Células Madre , Exosomas/química , Humanos , Hidrogeles/química , Anciano , Envejecimiento/fisiología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Geriatría
2.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692796

RESUMEN

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Asunto(s)
Exosomas , Nanopartículas de Magnetita , MicroARNs , Enfermedad de Parkinson , Transferrina , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Exosomas/química , MicroARNs/sangre , Nanopartículas de Magnetita/química , Transferrina/química , Encéfalo/metabolismo , Biomarcadores/sangre , Masculino , Femenino
3.
Anal Chim Acta ; 1308: 342578, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740462

RESUMEN

Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.


Asunto(s)
ADN , Neoplasias , Biopsia Líquida/métodos , Humanos , ADN/química , Neoplasias/diagnóstico , Neoplasias/patología , Biomarcadores de Tumor/análisis , Células Neoplásicas Circulantes/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/análisis , Exosomas/química
4.
ACS Nano ; 18(18): 11753-11768, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649866

RESUMEN

The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Materiales Biomiméticos , Terapia Genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Técnicas de Transferencia de Gen , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Humanos , Liposomas/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Biomimética , Exosomas/metabolismo , Exosomas/química , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética
5.
Biomater Sci ; 12(10): 2561-2578, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38602364

RESUMEN

The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas , Hidrogeles , Exosomas/química , Exosomas/metabolismo , Hidrogeles/química , Hidrogeles/administración & dosificación , Humanos , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ingeniería de Tejidos , Portadores de Fármacos/química
6.
Int J Nanomedicine ; 19: 3657-3675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681093

RESUMEN

Exosomes are extracellular vesicles that originate from various cells and mediate intercellular communication, altering the behavior or fate of recipient cells. They carry diverse macromolecules, such as lipids, proteins, carbohydrates, and nucleic acids. Environmental stressors can change the exosomal contents of many cells, making them useful for diagnosing many chronic disorders, especially neurodegenerative, cardiovascular, cancerous, and diabetic diseases. Moreover, exosomes can be engineered as therapeutic agents to modulate disease processes. State-of-art techniques are employed to separate exosomes including ultracentrifugation, size-exclusion chromatography and immunoaffinity. However, modern technologies such as aqueous two-phase system as well as microfluidics are gaining attention in the recent years. The article highlighted the composition, biogenesis, and implications of exosomes, as well as the standard and novel methods for isolating them and applying them as biomarkers and therapeutic cargo carriers.


Asunto(s)
Exosomas , Exosomas/química , Exosomas/metabolismo , Humanos , Biomarcadores/análisis , Animales , Comunicación Celular/fisiología , Neoplasias/metabolismo , Neoplasias/terapia
7.
Anal Chim Acta ; 1305: 342527, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677835

RESUMEN

The lipid based ESCRT-independent mechanism, which contributes to MVB formation, is one of the crucial procedures in exosome biogenesis. n-SMase is a key lipid metabolism enzyme in this mechanism and can induce the hydrolysis of sphingomyelins (SMs) to ceramides (Cers), thereby promoting the formation of ILVs inside MVBs. Therefore, the regulation of n-SMase can realize the alteration in exosome release. According to the fact that cancer-associated cells have a tendency to release more exosomes than healthy cells, lipid extracts in exosomes from healthy volunteers, HCC and ICC patients were analyzed by a novel pseudotargeted lipidomics method focused on sphingolipids (SLs) to explore whether cancer-related features regulate the release of exosomes through the above pathway. Multivariate analysis based on the SLs expression could distinguish three groups well indicated that the SLs expression among the three groups were different. In cancer groups, two species of critical Cers were up-regulated, denoted as Cer (d18:1_16:0) and Cer (d18:1_18:0), while 55 kinds of SLs were down-regulated, including 40 species of SMs, such as SM (d18:1_16:0), SM (d18:1_18:1) and SM (d18:1_24:0). Meanwhile, several species of SM/Cer exhibited significant down-regulation. This substantial enhancement of the SMs hydrolysis to Cers process during exosome biogenesis suggested that cancer-related features may potentially promote an increase in exosome release through ESCRT-independent mechanism. Moreover, differential SLs have a capability of becoming potential biomarkers for disease diagnosis and classification with an AUC value of 0.9884 or 0.9806 for the comparison between healthy group and HCC or ICC groups, respectively. In addition, an association analysis conducted on the cell lines showed that changes in the SM/Cer contents in cells and their exosomes were negatively correlated with the levels of released exosomes, implied the regulation of exosome release levels can be achieved by modulating n-SMase and subsequent SL expression.


Asunto(s)
Exosomas , Lipidómica , Esfingolípidos , Humanos , Exosomas/metabolismo , Exosomas/química , Esfingolípidos/metabolismo , Esfingolípidos/análisis , Lipidómica/métodos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Masculino , Femenino , Neoplasias/metabolismo , Persona de Mediana Edad
8.
Int J Pharm ; 656: 124096, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583821

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Asunto(s)
Quitosano , Exosomas , Fibronectinas , Liposomas , Fibrosis Pulmonar , Piridonas , Animales , Fibronectinas/administración & dosificación , Fibrosis Pulmonar/tratamiento farmacológico , Exosomas/química , Quitosano/química , Quitosano/administración & dosificación , Administración por Inhalación , Microesferas , Liberación de Fármacos , Masculino , Preparaciones de Acción Retardada , Fenantrenos/administración & dosificación , Fenantrenos/química , Fenantrenos/farmacocinética , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratas Sprague-Dawley , Antifibróticos/administración & dosificación , Antifibróticos/química
9.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621341

RESUMEN

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Asunto(s)
Aptámeros de Nucleótidos , Antígeno B7-H1 , Técnicas Biosensibles , Doxorrubicina , Técnicas Electroquímicas , Exosomas , Neoplasias Pulmonares , Humanos , Técnicas Biosensibles/métodos , Exosomas/química , Técnicas Electroquímicas/métodos , Neoplasias Pulmonares/química , Aptámeros de Nucleótidos/química , Doxorrubicina/química , ADN/química , Azul de Metileno/química , Nanosferas/química , G-Cuádruplex
10.
J Am Chem Soc ; 146(15): 10293-10298, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569597

RESUMEN

Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.


Asunto(s)
Biotecnología , Fraccionamiento Celular , ADN , Exosomas , Nanotecnología , ADN/química , Exosomas/química , Exosomas/inmunología , Nanotecnología/métodos , Fraccionamiento Celular/métodos , Anticuerpos/inmunología , Biomarcadores/análisis , Biotecnología/métodos , Microscopía Fluorescente , Imagen Individual de Molécula
11.
Nanoscale ; 16(16): 8046-8059, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38563130

RESUMEN

The biomedical application of nanotechnology in cancer treatment has demonstrated significant potential for improving treatment efficiencies and ameliorating adverse effects. However, the medical translation of nanotechnology-based nanomedicines faces challenges including hazardous environmental effects, difficulties in large-scale production, and possible excessive costs. In the present study, we extracted and purified natural exosome-like nanoparticles (ELNs) from Phellinus linteus. These nanoparticles (denoted as P-ELNs) had an average particle size of 154.1 nm, displayed a negative zeta potential of -31.3 mV, and maintained stability in the gastrointestinal tract. Furthermore, P-ELNs were found to contain a diverse array of functional components, including lipids and pharmacologically active small-molecule constituents. In vitro investigations suggested that they exhibited high internalization efficiency in liver tumor cells (Hepa 1-6) and exerted significant anti-proliferative, anti-migratory, and anti-invasive effects against Hepa 1-6 cells. Strikingly, the therapeutic outcomes of oral P-ELNs were confirmed in an animal model of metastatic hepatocellular carcinoma by amplifying reactive oxygen species (ROS) and rebalancing the gut microbiome. These findings demonstrate the potential of P-ELNs as a promising oral therapeutic platform for liver cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Microbioma Gastrointestinal , Neoplasias Hepáticas , Especies Reactivas de Oxígeno , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Exosomas/metabolismo , Exosomas/química , Microbioma Gastrointestinal/efectos de los fármacos , Basidiomycota/química , Basidiomycota/metabolismo , Nanopartículas/química , Phellinus/química , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Administración Oral
12.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651549

RESUMEN

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Asunto(s)
Exosomas , Nanopartículas , Plantas , Nanopartículas/química , Exosomas/química , Exosomas/metabolismo , Plantas/química , Plantas/metabolismo , Tamaño de la Partícula , Ultracentrifugación , Cromatografía en Gel
13.
Anal Chem ; 96(17): 6794-6801, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38624007

RESUMEN

Identification of protein profiling on plasma exosomes by SERS can be a promising strategy for early cancer diagnosis. However, it is still challenging to detect multiple exosomal proteins simultaneously by SERS since the Raman signals of exosomes detected by conventional colloidal nanocrystals or two-dimensional SERS substrates are incomplete and complex. Herein, we develop a novel three-dimensional (3D) surround-enhancing SERS platform, named 3D se-SERS, for the multiplex detection of exosomal proteins. In this 3D se-SERS, proteins and exosomes are covered with "hotspots" generated by the gold nanoparticles, which surround the analytes densely and three-dimensionally, providing sensitive and comprehensive SERS signals. Combining this 3D se-SERS with a deep learning model, we successfully quantitatively profiled seven proteins including CD63, CD81, CD9, CD151, CD171, TSPAN8, and PD-L1 on the surface of plasma exosomes from patients, which can predict the occurrence and advancement of lung cancer. This 3D se-SERS integrating deep learning technique benefits from high sensitivity and significant multiplexing ability for comprehensive analysis of proteins and exosomes, demonstrating the potential of deep learning-driven 3D se-SERS technology for plasma exosome-based early cancer diagnosis.


Asunto(s)
Aprendizaje Profundo , Exosomas , Oro , Espectrometría Raman , Humanos , Exosomas/química , Oro/química , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/sangre , Nanopartículas del Metal/química
14.
Arkh Patol ; 86(2): 22-29, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38591903

RESUMEN

BACKGROUND: Extracellular vesicles are surrounded by a phospholipid bilayer, carrying various active biomolecules and participating in many physiological and pathological processes, including infectious ones. OBJECTIVE: To research the role of exosomes in intercellular interactions in the pathogenesis of various types of lung damage in fatal cases of COVID-19. MATERIAL AND METHODS: We conducted a clinical and morphological analysis of 118 fatal cases caused by coronavirus infection in Moscow. We selected 32 cases with morphological signs of various types of lung lesions for immunohistochemical reaction (IHC) with antibodies against tetraspanin proteins (CD63, CD81), which are involved in the assembly of exosomes, as well as with antibodies against viral proteins: nucleocapsid and spike protein. We determined the main producing cells of extracellular vesicles and cells containing viral proteins, carried out their comparison and quantitative analysis. RESULTS: IHC reaction with antibodies against CD63 showed cytoplasmic granular uniform and subapical staining of cells, as well as granular extracellular staining. We determined similar staining using antibodies against viral proteins. Extracellular vesicles were found in the same cells as viral proteins. The main producing cells of vesicles and cells containing viral proteins were found to be macrophages, type II pneumocytes, and endothelial cells. CONCLUSION: Taking into account the results of the literature, the localization of viral proteins and extracellular vesicles in the same cells indicates the key role of vesicles in the pathogenesis of various forms of lung damage by the SARS-CoV-2 virus, in the dissemination of the pathogen in the organism, which leads to interaction with the adaptive immune system and the formation of immunity.


Asunto(s)
COVID-19 , Exosomas , Lesión Pulmonar , Humanos , Exosomas/química , Exosomas/metabolismo , COVID-19/metabolismo , Lesión Pulmonar/metabolismo , SARS-CoV-2 , Células Endoteliales , Proteínas Virales/análisis , Proteínas Virales/metabolismo
15.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649155

RESUMEN

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Asunto(s)
Arginina , Liposomas , Arginina/química , Arginina/metabolismo , Humanos , Liposomas/química , Liposomas/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/genética , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Secuencia de Bases , ARN/metabolismo , ARN/química , ARN/genética , Exosomas/metabolismo , Exosomas/genética , Exosomas/química , Transferencia Resonante de Energía de Fluorescencia
16.
Mikrochim Acta ; 191(5): 279, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647729

RESUMEN

The therapeutic effect of gefitinib on colorectal cancer (CRC) is unclear, but it has been reported that stromal cells in the tumor microenvironment may have an impact on drug sensitivity. Herein, we established a microfluidic co-culture system and explored the sensitivity of CRC cells co-cultured with cancer-associated fibroblasts (CAFs) to gefitinib. The system consisted of a multichannel chip and a Petri dish. The chambers in the chip and dish were designed to continuously supply nutrients for long-term cell survival and create chemokine gradients for driving cell invasion without any external equipment. Using this system, the proliferation and invasiveness of cells were simultaneously evaluated by quantifying the area of cells and the migration distance of cells. In addition, the system combined with live cell workstation could evaluate the dynamic drug response of co-cultured cells and track individual cell trajectories in real-time. When CRC cells were co-cultured with CAFs, CAFs promoted CRC cell proliferation and invasion and reduced the sensitivity of cells to gefitinib through the exosomes secreted by CAFs. Furthermore, the cells that migrated out of the chip were collected, and EMT-related markers were determined by immunofluorescent and western blot assays. The results demonstrated that CAFs affected the response of CRC cells to gefitinib by inducing EMT, providing new ideas for further research on the resistance mechanism of gefitinib. This suggests that targeting CAFs or exosomes might be a new approach to enhance CRC sensitivity to gefitinib, and our system could be a novel platform for investigating the crosstalk between tumor cells and CAFs and understanding multiple biological changes of the tumor cells in the tumor microenvironment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Técnicas de Cocultivo , Neoplasias Colorrectales , Gefitinib , Gefitinib/farmacología , Humanos , Técnicas de Cocultivo/instrumentación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Exosomas/metabolismo , Exosomas/química , Exosomas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
17.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626424

RESUMEN

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Asunto(s)
Factores de Transcripción Activadores , Condrocitos , Exosomas , Mitocondrias , Osteoartritis , ARN Mensajero , Respuesta de Proteína Desplegada , Osteoartritis/patología , Osteoartritis/metabolismo , Osteoartritis/terapia , Exosomas/metabolismo , Exosomas/química , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción Activadores/química , Factores de Transcripción Activadores/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/metabolismo , Hidrogeles/química , Masculino , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos
18.
Nanoscale ; 16(18): 8950-8959, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630023

RESUMEN

Exosomal programmed death ligand-1 (ExoPD-L1) is a vital marker of immune activation in the early stages of tumor therapy and it can inhibit anti-tumor immune responses. However, due to the low expression of ExoPD-L1 in cancer cells, it is difficult to perform highly sensitive assays and accurately differentiate cancer sources. Therefore, we constructed a coaxial dual-path electrochemical biosensor for highly accurate identification and detection of ExoPD-L1 from lung cancer based on chemical-biological coaxial nanomaterials and nucleic acid molecular signal amplification strategies. The measurements showed that the detected ExoPD-L1 concentrations ranged from 6 × 102 particles per mL to 6 × 108 particles per mL, and the detection limit was 310 particles per mL. Compared to other sensors, the electrochemical biosensor designed in this study has a lower detection limit and a wider detection range. Furthermore, we also successfully identified lung cancer-derived ExoPD-L1 by analyzing multiple protein biomarkers expressed on exosomes through the "AND" logic strategy. This sensor platform is expected to realize highly sensitive detection and accurate analysis of multiple sources of ExoPD-L1 and provide ideas for the clinical detection of ExoPD-L1.


Asunto(s)
Antígeno B7-H1 , Técnicas Biosensibles , Técnicas Electroquímicas , Exosomas , Neoplasias Pulmonares , Técnicas Biosensibles/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Humanos , Antígeno B7-H1/análisis , Antígeno B7-H1/metabolismo , Exosomas/química , Exosomas/metabolismo , Límite de Detección , Biomarcadores de Tumor/análisis , Línea Celular Tumoral
19.
Anal Methods ; 16(17): 2751-2759, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38634398

RESUMEN

Exosomes have gained recognition as valuable reservoirs of biomarkers, holding immense potential for early cancer detection. Consequently, there is a pressing need for the development of an economical and highly sensitive exosome detection methodology. In this work, we present a fluorescence method for breast cancer-derived exosome detection based on Cu-triggered click reaction of azide-modified CD63 aptamer and alkyne functionalized Pdots. The detection threshold for the exosomes obtained from the breast cancer serum was determined to be 6.09 × 107 particles per µL, while the measurable range spanned from 6.50 × 107 to 1.30 × 109 particles per µL. The employed methodology achieved notable success in accurately distinguishing breast cancer patients from healthy individuals through serum analysis. The application of this method showcases the significant potential for early exosome analysis in the clinical diagnosis of breast cancer patients.


Asunto(s)
Alquinos , Aptámeros de Nucleótidos , Azidas , Técnicas Biosensibles , Neoplasias de la Mama , Química Clic , Exosomas , Tetraspanina 30 , Humanos , Neoplasias de la Mama/sangre , Femenino , Exosomas/química , Tetraspanina 30/metabolismo , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Azidas/química , Alquinos/química , Colorantes Fluorescentes/química , Polímeros/química
20.
J Mater Chem B ; 12(17): 4184-4196, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38592788

RESUMEN

Stent implantation is one of the most effective methods for the treatment of atherosclerosis. Nitinol stent is a type of stent with good biocompatibility and relatively mature development; however, it cannot effectively achieve long-term anticoagulation and early endothelialization. In this study, nitinol surfaces with the programmed assembly of heparin, exosomes from endothelial cells, and endothelial affinity peptide (REDV) were fabricated through layer-by-layer assembly technology and click-chemistry, and then exosomes/REDV-modified nitinol interface (ACC-Exo-REDV) was prepared. ACC-Exo-REDV could promote the rapid proliferation and adhesion of endothelial cells and achieve anticoagulant function in the blood. Besides, ACC-Exo-REDV had excellent anti-inflammatory properties and played a positive role in the transformation of macrophage from the pro-inflammatory to anti-inflammatory phenotype. Ex vivo and in vivo experiments demonstrated the effectiveness of ACC-Exo-REDV in preventing thrombosis and hyperplasia formation. Hence, the programmed assembly of exosome interface could contribute to endothelialization and have potential application on the cardiovascular surface modification to prevent stent thrombosis and restenosis.


Asunto(s)
Aleaciones , Exosomas , Células Endoteliales de la Vena Umbilical Humana , Stents , Aleaciones/química , Exosomas/metabolismo , Exosomas/química , Humanos , Animales , Péptidos/química , Péptidos/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Propiedades de Superficie , Adhesión Celular/efectos de los fármacos , Células RAW 264.7 , Células Endoteliales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...