Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Pharmacokinet ; 57(9): 1059-1074, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29464550

RESUMEN

Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer's disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.


Asunto(s)
Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Fármacos del Sistema Nervioso Central/farmacocinética , Modelos Biológicos , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Simulación por Computador , Desarrollo de Medicamentos , Líquido Extracelular/química , Humanos , Líquido Intracelular/química , Distribución Tisular
2.
Eur J Pharm Sci ; 112: 168-179, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29133240

RESUMEN

Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human, and to predict drug concentration-time profiles in multiple CNS compartments on available human data of four drugs (acetaminophen, oxycodone, morphine and phenytoin). Values of the system-specific parameters in the rat CNS PBPK model were replaced by corresponding human values. The contribution of active transporters for the four selected drugs was scaled based on differences in expression of the pertinent transporters in both species. Model predictions were evaluated with available pharmacokinetic (PK) data in human brain extracellular fluid and/or cerebrospinal fluid, obtained under physiologically healthy CNS conditions (acetaminophen, oxycodone, and morphine) and under pathophysiological CNS conditions where CNS physiology could be affected (acetaminophen, morphine and phenytoin). The human CNS PBPK model could successfully predict their concentration-time profiles in multiple human CNS compartments in physiological CNS conditions within a 1.6-fold error. Furthermore, the model allowed investigation of the potential underlying mechanisms that can explain differences in CNS PK associated with pathophysiological changes. This analysis supports the relevance of the developed model to allow more effective selection of CNS drug candidates since it enables the prediction of CNS target-site concentrations in humans, which are essential for drug development and patient treatment.


Asunto(s)
Encéfalo/metabolismo , Modelos Biológicos , Acetaminofén/sangre , Acetaminofén/líquido cefalorraquídeo , Acetaminofén/farmacocinética , Animales , Transporte Biológico , Lesiones Traumáticas del Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Fármacos del Sistema Nervioso Central/farmacocinética , Epilepsia/metabolismo , Humanos , Morfina/sangre , Morfina/líquido cefalorraquídeo , Morfina/farmacocinética , Oxicodona/sangre , Oxicodona/líquido cefalorraquídeo , Oxicodona/farmacocinética , Fenitoína/líquido cefalorraquídeo , Fenitoína/farmacocinética , Ratas
3.
Expert Opin Drug Deliv ; 13(1): 85-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26393289

RESUMEN

INTRODUCTION: The brain-blood ratio is an important model correlating the brain-targeting ability of neurotherapeutics with the CNS pharmacokinetics, which need to be presented before the scientific community for exploration of its scientific worth. The purpose of this article is to bring this key concept and its precise discussion to the attention of the researchers. AREAS COVERED: Three major points are discussed herein: First, the significance of brain-blood ratio with respect to investigational neurotherapeutics, and carrier systems and correlation of its research findings with the brain targeting efficiency. Second, the various factors influencing the brain-blood ratio. Third, the various strategies for enhancing the brain-blood ratio. In addition, the benchmark criteria for CNS-likeness of drug molecules and the correlation of brain-blood ratio with brain targeting ability of neurotherapeutics have been tabulated. EXPERT OPINION: The brain-blood ratio (also referred to as the brain-plasma ratio) represents one of the tools available today for estimation of CNS pharmacokinetics. It is preferred over other complicated techniques (in situ brain perfusion and microdialysis) due to its ease of use and practicality. We are optimistic that the brain-blood ratio offers an excellent way of evaluating brain-targeting efficiency of neurotherapeutics effectively. In our opinion, it is a very fundamental aspect of brain bioavailability and needs to be presented in a precise way.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacocinética , Sistemas de Liberación de Medicamentos , Fármacos del Sistema Nervioso Central/sangre , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Humanos
4.
Biochem Pharmacol ; 85(11): 1684-99, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23454189

RESUMEN

The unbound drug concentration in brain parenchyma is considered to be the relevant driver for interaction with central nervous system (CNS) biological targets. Drug levels in cerebrospinal fluid (C_CSF) are frequently used surrogates for the unbound concentrations in brain. For drugs actively transported across the blood-brain barrier (BBB), C_CSF differs from unbound plasma concentration (Cu_p) to an extent that is commonly unknown. In this study, the relationship between CSF-to-unbound plasma drug partitioning in rats and the mouse Pgp (Mdr1a) efflux ratio (ER) obtained from in vitro transcellular studies has been investigated for a set of 61 CNS compounds exhibiting substantial diversity in chemical structure and physico-chemical properties. In order to understand the in vitro-in vivo extrapolation of Pgp efflux, a mechanistic model was derived relating in vivo CNS distribution kinetics to in vitro active transport. The model was applied to predict C_CSF from Cu_p and ER data for 19 proprietary Roche CNS drug candidates. The calculated CSF concentrations were correlated with CNS pharmacodynamic responses observed in rodent models. The correlation between in vitro and in vivo potency for different pharmacological endpoints indicated that the predicted C_CSF is a valuable surrogate of the concentration at the target site. Overall, C_CSF proved superior description of PK/PD data than unbound plasma or total brain concentration for Mdr1a substrates. Predicted C_CSF can be used as a default approach to understand the PK/PD relationships in CNS efficacy models and can support the extrapolation of efficacious brain exposure for new drug candidates from rodent to man.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Fármacos del Sistema Nervioso Central/farmacocinética , Descubrimiento de Drogas , Animales , Proteínas Sanguíneas/metabolismo , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Análisis por Conglomerados , Células LLC-PK1 , Ratones , Modelos Teóricos , Ratas , Porcinos
5.
J Pharmacokinet Pharmacodyn ; 40(3): 343-58, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23468415

RESUMEN

The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants.


Asunto(s)
Antibacterianos/farmacocinética , Antineoplásicos/farmacocinética , Fármacos del Sistema Nervioso Central/farmacocinética , Corteza Cerebral/metabolismo , Microdiálisis , Animales , Antibacterianos/sangre , Antibacterianos/líquido cefalorraquídeo , Antineoplásicos/sangre , Antineoplásicos/líquido cefalorraquídeo , Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/sangre , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Ensayos Clínicos como Asunto , Descubrimiento de Drogas/métodos , Diseño de Equipo , Humanos , Tasa de Depuración Metabólica , Microdiálisis/instrumentación
6.
J Pharmacokinet Pharmacodyn ; 40(3): 315-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23400635

RESUMEN

Human cerebrospinal fluid (CSF) sampling is of high value as the only general applicable methodology to obtain information on free drug concentrations in individual human brain. As the ultimate interest is in the free drug concentration at the CNS target site, the question is what CSF concentrations may tell us in that respect. Studies have been performed in rats and other animals for which concentrations in brain extracellular fluid (brain ECF) as a target site for many drugs, have been compared to (cisterna magna) CSF concentrations, at presumed steady state conditions,. The data indicated that CSF drug concentrations provided a rather good indication of, but not a reliable measure for predicting brain ECF concentrations. Furthermore, comparing rat with human CSF concentrations, human CSF concentrations tend to be higher and display much more variability. However, this comparison of CSF concentrations cannot be a direct one, as humans probably had a disease for which CSF was collected in the first place, while the rats were healthy. In order to be able to more accurately predict human brain ECF concentrations, understanding of the complexity of the CNS in terms of intrabrain pharmacokinetic relationships and the influence of CNS disorders on brain pharmacokinetics needs to be increased. This can be achieved by expanding a currently existing preclinically derived physiologically based pharmacokinetic model for brain distribution. This model has been shown to successfully predict data obtained for human lumbar CSF concentrations of acetaminophen which renders trust in the model prediction of human brain ECF concentrations. This model should further evolute by inclusion of influences of drug properties, fluid flows, transporter functionalities and different disease conditions. Finally the model should include measures of target site engagement and CNS effects, to ultimately learn about concentrations that best predict particular target site concentrations, via human CSF concentrations.


Asunto(s)
Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Descubrimiento de Drogas/métodos , Neurociencias/métodos , Animales , Barrera Hematoencefálica/anatomía & histología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiología , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Fármacos del Sistema Nervioso Central/farmacocinética , Circulación Cerebrovascular , Líquido Extracelular/química , Humanos , Microdiálisis , Modelos Neurológicos , Especificidad de la Especie , Distribución Tisular
7.
Mol Pharm ; 10(5): 1522-32, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23316936

RESUMEN

Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought.


Asunto(s)
Enfermedades del Sistema Nervioso Central/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Animales , Transporte Axonal , Transporte Biológico Activo , Barrera Hematoencefálica/fisiología , Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Fármacos del Sistema Nervioso Central/farmacocinética , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Inyecciones Espinales , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/líquido cefalorraquídeo , Sustancias Macromoleculares/farmacocinética , Meninges/anatomía & histología , Meninges/fisiología , Modelos Animales
8.
J Med Chem ; 56(1): 2-12, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23075026

RESUMEN

This Perspective provides important concepts about the blood-brain barrier (BBB) in drug discovery and how they should be applied effectively in designing successful CNS drugs. Key parameters for brain penetration are discussed, including unbound brain concentration, unbound brain-to-plasma ratio, BBB permeability, fraction unbound in brain and plasma, and transporters. Results from a retrospective analysis of 32 Pfizer CNS clinical drug candidates are described. Frequently encountered misconceptions about brain penetration in drug discovery programs are clarified. Strategies and guidance are provided to enhance or minimize brain exposure for CNS or peripheral targets, respectively. Recommendations for screening methodologies and a cascade in assessing brain penetration potential are presented.


Asunto(s)
Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/sangre , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Descubrimiento de Drogas , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Permeabilidad , Unión Proteica
9.
Basic Clin Pharmacol Toxicol ; 106(3): 215-20, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20050843

RESUMEN

Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Dominio Catalítico , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/sangre , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Fármacos del Sistema Nervioso Central/farmacología , Humanos , Microdiálisis , Modelos Biológicos , Valor Predictivo de las Pruebas , Unión Proteica , Distribución Tisular
10.
Curr Drug Metab ; 8(4): 297-306, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17504219

RESUMEN

Cytochrome P450 (CYP, P450) is the collective term for a superfamily of heme-containing membrane proteins responsible for the metabolism of approximately 70 - 80 % of clinically used drugs. Besides the liver and other peripheral organs, P450 isoforms are expressed in glial cells and neurons of the brain. To enlighten their function and significance is a topic of high interest, as most of the neuroactive drugs used in therapy today are not only substrates, but also inducers of brain P450s with far reaching consequences. First of all, brain P450s are regulated differentially from those in liver. The availability of the prosthetic heme group appears to be essential for correct membrane insertion and enzymatic functionality of brain P450s. Furthermore, although not contributing to body's overall drug metabolism, brain P450s fulfil particular functions within specific cell types of the brain. In astrocytes of brain's border lines P450 isoforms are expressed at very high level. They form a metabolic barrier regulating drugs' influx, modulate blood-flow regulation, and act as signalling enzymes in inflammation. In neurons, however, P450s apparently have different function. In specified brain regions such as hypothalamus, hippocampus and striatum they provide signalling molecules like steroids and fatty acids necessary for neuronal outgrowth and maintenance. Induction of these P450s by neuroactive drugs can alter steroid hormone signalling directly in drug target cells, which may cause clinically relevant side effects like reproductive disorders and sexual or mental dysfunction. The understanding of brain P450 function appears to be of major interest in long-term drug mediated therapy of neurological diseases.


Asunto(s)
Encéfalo/enzimología , Fármacos del Sistema Nervioso Central/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Enzimológica de la Expresión Génica , Animales , Anticonvulsivantes/metabolismo , Barrera Hematoencefálica/enzimología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Fármacos del Sistema Nervioso Central/farmacología , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hormonas Gonadales/metabolismo , Hemo/química , Hipocampo/enzimología , Humanos , Hígado/enzimología , Neuroglía/enzimología , Neuronas/enzimología , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal
11.
Int J Pharm ; 341(1-2): 20-5, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17482780

RESUMEN

The pharmacokinetic behavior of Gastrodin in rat plasma and cerebrospinal fluid (CSF) after intranasal and intravenous administration (50mg kg(-1)) was investigated. Intranasal administration of Gastrodin provided a comparable AUC in CSF compared with the intravenous administration. But Gastrodin level in plasma was very low. The ratios of AUC values of intranasal to intravenous administration were 8.85% and 105.5% in plasma and CSF, respectively. The drug targeting index (DTI) was 12.34. In conclusion, intranasal administration of Gastrodin is a promising alternative to traditional administration. Olfactory mucosa did present another pathway for transport Gastrodin to the brain.


Asunto(s)
Alcoholes Bencílicos/administración & dosificación , Alcoholes Bencílicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacocinética , Glucósidos/administración & dosificación , Glucósidos/farmacocinética , Mucosa Olfatoria/metabolismo , Administración Intranasal , Animales , Área Bajo la Curva , Alcoholes Bencílicos/sangre , Alcoholes Bencílicos/líquido cefalorraquídeo , Disponibilidad Biológica , Fármacos del Sistema Nervioso Central/sangre , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Cromatografía Líquida de Alta Presión , Glucósidos/sangre , Glucósidos/líquido cefalorraquídeo , Inyecciones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
12.
Acta Anaesthesiol Scand ; 46(10): 1236-41, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12421196

RESUMEN

BACKGROUND: Neuromuscular blocking agents may exert central nervous system effects when they reach the brain. This study assessed the concentrations and the time course of passage of vecuronium, atracurium, and its metabolite laudanosine in the cerebrospinal fluid (CSF) of patients undergoing intracranial aneurysm clipping. METHODS: Twenty-five patients with subarachnoid hemorrhage were randomly allocated to receive an intravenous infusion of vecuronium (n=13) or atracurium (n=12). Arterial blood and lumbar CSF were sampled before and 1, 2, 3, 4 and 8 h after the start of the relaxant infusion. The samples were analyzed by liquid chromatography-electrospray ionization mass spectrometry (vecuronium) and high-pressure liquid chromatography (atracurium and laudanosine). RESULTS: The data of 20 patients (10 in both groups) were analyzed. In 11 CSF samples from five patients atracurium was detected in concentrations from 10 to 50 ng/ml. Laudanosine was retrieved in all CSF samples at 1, 2, 3, 4 and 8 h; the highest CSF concentration of laudanosine occurred at 3 h [38 (18-63) ng/ml: median (range)]. Vecuronium was not found in any CSF sample. CONCLUSION: Significant concentrations of atracurium and laudanosine but not of vecuronium were detected in the CSF of patients during and immediately after intracranial aneurysm surgery.


Asunto(s)
Atracurio/líquido cefalorraquídeo , Atracurio/farmacocinética , Fármacos del Sistema Nervioso Central/líquido cefalorraquídeo , Fármacos del Sistema Nervioso Central/farmacocinética , Aneurisma Intracraneal/cirugía , Isoquinolinas/líquido cefalorraquídeo , Isoquinolinas/farmacocinética , Fármacos Neuromusculares no Despolarizantes/líquido cefalorraquídeo , Fármacos Neuromusculares no Despolarizantes/farmacocinética , Hemorragia Subaracnoidea/fisiopatología , Bromuro de Vecuronio/líquido cefalorraquídeo , Bromuro de Vecuronio/farmacocinética , Adolescente , Adulto , Anciano , Análisis de Varianza , Atracurio/sangre , Fármacos del Sistema Nervioso Central/sangre , Femenino , Humanos , Isoquinolinas/sangre , Masculino , Persona de Mediana Edad , Fármacos Neuromusculares no Despolarizantes/sangre , Factores de Tiempo , Bromuro de Vecuronio/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...