Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161576

RESUMEN

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
2.
Nucleic Acids Res ; 45(12): 7309-7325, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28575317

RESUMEN

To assess the influence of degenerate initiation triplets on mRNA recruitment by ribosomes, five mRNAs identical but for their start codon (AUG, GUG, UUG, AUU and AUA) were offered to a limiting amount of ribosomes, alone or in competition with an identical AUGmRNA bearing a mutation conferring different electrophoretic mobility to the product. Translational efficiency and competitiveness of test mRNAs toward this AUGmRNA were determined quantifying the relative amounts of the electrophoretically separated wt and mutated products synthesized in vitro and found to be influenced to different extents by the nature of their initiation triplet and by parameters such as temperature and nutrient availability in the medium. The behaviors of AUAmRNA, UUGmRNA and AUGmRNA were the same between 20 and 40°C whereas the GUG and AUUmRNAs were less active and competed poorly with the AUGmRNA, especially at low temperature. Nutrient limitation and preferential inhibition by ppGpp severely affected activity and competitiveness of all mRNAs bearing non-AUG starts, the UUGmRNA being the least affected. Overall, our data indicate that beyond these effects exclusively due to the degenerate start codons within an optimized translational initiation region, an important role is played by the context in which the rare start codons are present.


Asunto(s)
Codón Iniciador , Escherichia coli/genética , Iniciación de la Cadena Peptídica Traduccional , Factor 1 Procariótico de Iniciación/genética , ARN Mensajero/genética , Unión Competitiva , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Mutación , Factor 1 Procariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Fracciones Subcelulares/química , Temperatura
3.
Future Microbiol ; 11(2): 195-214, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26855259

RESUMEN

AIM: Wolbachia is a promising antifilarial chemotherapeutic target. Translation initiation factor-1 (Tl IF-1) is an essential factor in prokaryotes. Functional characterization of Wolbachia's novel proteins/enzymes is necessary for the development of adulticidal drugs. MATERIALS & METHODS: Mutant, Wol Tl IF-1 R45D was constructed by site directed mutagenesis. Fluorimetry and size exclusion chromatography were used to determine the biophysical characteristics. Mobility shift assay and fluorescence resonance energy transfer were used to investigate the functional aspect of Wol Tl IF-1 with its mutant. RESULTS: Both wild and mutant were in monomeric native conformations. Wild exhibits nonspecific binding with ssRNA/ssDNA fragments under electrostatic conditions and showed annealing and displacement of RNA strands in comparison to mutant. CONCLUSION: Point mutation impaired RNA chaperone activity of the mutant and its interaction with nucleotides.


Asunto(s)
Arginina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Wolbachia/genética , Wolbachia/metabolismo , Animales , Proteínas Bacterianas/química , Evolución Biológica , Brugia Malayi/microbiología , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Mutagénesis Sitio-Dirigida , Filogenia , Mutación Puntual , Factor 1 Procariótico de Iniciación/química , Unión Proteica , ARN/metabolismo , Alineación de Secuencia
4.
Proc Natl Acad Sci U S A ; 112(52): 15874-9, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668356

RESUMEN

Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Conformación Molecular , Factor 1 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/química
5.
Nucleic Acids Res ; 43(22): 10700-12, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338773

RESUMEN

The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.


Asunto(s)
Bacterias/genética , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
6.
Comp Immunol Microbiol Infect Dis ; 36(1): 25-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23079772

RESUMEN

Wolbachia, the intracellular alpha-proteobacteria are required for the development, fertility and survival of filarial parasites. Wolbachia Translation initiation factor-1 (Wol Tl IF-1) is one of the factors required for Wolbachia growth and viability. In the present study, we cloned, over expressed and purified Wol Tl IF-1 that exhibited strong immuno-reactivity with various categories of bancroftian sera. Immunization with the recombinant protein resulted into significant reduction in microfilarial density (70-72%) and adult worm establishment (61-63%) in susceptible Mastomys coucha. Protection offered by Wol Tl IF-1 was found associated with humoral immune arm as observed by an increased antibody level with preponderance of IgE, IgM, IgG1 and IgG2a isotypes. The anti-Wol Tl IF-1 antibodies promoted profound adherence of peritoneal exudates cells to the surface of microfilariae and infective larvae causing cytotoxicity and their death. The present study indicates potential of recombinant Wol Tl IF-1 as a promising vaccine candidate against human lymphatic filarial infection.


Asunto(s)
Brugia Malayi/inmunología , Filariasis Linfática/prevención & control , Factor 1 Procariótico de Iniciación/inmunología , Células Th2/inmunología , Wolbachia/inmunología , Animales , Linfocitos B/inmunología , Adhesión Celular/inmunología , Clonación Molecular , Reacciones Cruzadas/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Expresión Génica , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Activación de Linfocitos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Masculino , Ratones , Murinae , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Wolbachia/genética
7.
FEBS J ; 278(18): 3508-17, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21791000

RESUMEN

A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.


Asunto(s)
Frío/efectos adversos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Mutación , Factor 1 Procariótico de Iniciación/metabolismo , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas/metabolismo , Sustitución de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Factor 1 Procariótico de Iniciación/genética , Multimerización de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Supresión Genética
8.
FEMS Microbiol Lett ; 313(2): 141-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21054500

RESUMEN

Using a specialized ribosome system, previous studies have identified G791 in Escherichia coli 16S rRNA as an invariant and essential residue for ribosome function. To investigate the functional role of G791, we searched for multicopy suppressors that partially restored the protein synthesis ability of mutant ribosomes bearing a G to U substitution at position 791 (U791 ribosomes). Analyses of isolated multicopy suppressors showed that overexpression of initiation factor 1 (IF1) enhanced the protein synthesis ability of U791 ribosomes. In contrast, overexpression of initiation factor 2 (IF2) or IF3 did not enhance the protein synthesis ability of wild-type or U791 ribosomes, and overexpression of IF1 did not affect the function of wild-type or mutant ribosomes bearing nucleotide substitutions in other regions of 16S rRNA. Analyses of sucrose gradient profiles of ribosomes showed that overexpression of IF1 marginally enhanced the subunit association of U791 ribosomes and indicated lower binding affinity of U791 ribosomes to IF1. Our findings suggest the involvement of IF1 in the restoration of the P-site function that was impaired by a nucleotide substitution at residue G791.


Asunto(s)
Escherichia coli/metabolismo , Factor 1 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 16S/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Mutación Puntual , Factor 1 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/genética , Factor 3 Procariótico de Iniciación/genética , ARN Ribosómico 16S/genética , Subunidades Ribosómicas/metabolismo , Ribosomas/genética , Supresión Genética
9.
FEBS Lett ; 584(5): 1011-5, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20132820

RESUMEN

The crystal structure of the free form of IF1 from Mycobacterium tuberculosis has been determined at 1.47 A resolution. The structure adopts the expected OB fold and matches the high structural conservation among IF1 orthologues. In order to further explore the function of Mtb-IF1, we built a model of its interaction with the 30S ribosomal subunit based on the crystal structure of the complex from Thermus thermophilus. The model suggests that several functionally important side chain residues undergo large movements while the rest of the protein in complex shows only very limited conformational change as compared to its form in solution.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Factor 1 Procariótico de Iniciación/química , Factor 1 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Thermus thermophilus/metabolismo
10.
Genes Cells ; 14(11): 1227-39, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19840122

RESUMEN

In Escherichia coli, temperature downshift elicits cold shock response, which is characterized by induction of cold shock proteins. CspA, the major cold shock protein of E. coli, helps cells to acclimatize to low temperature by melting the secondary structures in nucleic acids and acting as a transcription antiterminator. CspA and its homologues contain the cold shock domain and belong to the oligomer binding protein family, which also includes S1 domain proteins such as IF1. Structural similarity between IF1 and CspA homologues suggested a functional overlap between these proteins. Indeed IF1 can melt secondary structures in RNA and acts as transcription antiterminator in vivo and in vitro. Here, we show that in spite of having these critical activities, IF1 does not complement cold-sensitivity of a csp quadruple deletion strain. DNA microarray analysis shows that overproduction of IF1 and Csp leads to changes in expression of different sets of genes. Importantly, several genes which were previously shown to require Csp proteins for their expression at low temperature did not respond to IF1. Moreover, in vitro, we show that a transcription terminator responsive to Csp does not respond to IF1. Our results suggest that Csp proteins and IF1 have different sets of target genes as they may be suppressing the function of different types of transcription termination elements in specific genes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Factor 1 Procariótico de Iniciación/metabolismo , Proteínas y Péptidos de Choque por Frío , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Análisis por Micromatrices , Factor 1 Procariótico de Iniciación/genética , ARN Mensajero/metabolismo , Temperatura , Regulación hacia Arriba
11.
Gene ; 428(1-2): 31-5, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18951960

RESUMEN

Bacillus stearothermophilus infA encoding translation initiation factor IF1 was cloned and expressed in Escherichia coli and its transcript and protein product characterized. Although the functional properties of B. stearothermophilus and E. coli IF1, compared in several translational tests in the presence of both homologous and heterologous components, are not entirely identical, the two proteins are interchangeable in an in vitro translational system programmed with a natural mRNA. The availability of purified B. stearothermophilus IF1 now allows us to analyze the translation initiation pathway using efficient in vitro tests based entirely on purified components derived from this thermophilic Gram-positive bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Factor 1 Eucariótico de Iniciación/genética , Geobacillus stearothermophilus/genética , Factor 1 Procariótico de Iniciación/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Northern Blotting , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Geobacillus stearothermophilus/metabolismo , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , Factor 1 Procariótico de Iniciación/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
12.
Mol Microbiol ; 70(6): 1368-77, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18976282

RESUMEN

Bacterial translation initiation factor IF1 is homologous to archaeal aIF1A and eukaryal eIF1A, which form a complex with their homologous IF2-like factors (aIF5B and eIF5B respectively) during initiation of protein synthesis. A similar IF1-IF2 interaction is assumed to occur in all bacteria and supported by cross-linking data and stabilization of the 30S-IF2 interaction by IF1. Here we compare Escherichia coli IF1 with thermophilic factors from Bacillus stearothermophilus and Thermus thermophilus. All three IF1s are structurally similar and functionally interchangeable in vivo and in vitro. However, the thermophilic factors do not stimulate ribosomal binding of IF2DeltaN, regardless of 30S subunits and IF2 origin. We conclude that an IF1-IF2 interaction is not universally conserved and is not essential for cell survival.


Asunto(s)
Escherichia coli/metabolismo , Geobacillus stearothermophilus/metabolismo , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Thermus thermophilus/metabolismo , Escherichia coli/genética , Prueba de Complementación Genética , Geobacillus stearothermophilus/genética , Factor 1 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética
13.
Nature ; 455(7211): 416-20, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18758445

RESUMEN

Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/enzimología , Thermus thermophilus/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 Procariótico de Iniciación/química , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/ultraestructura , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/ultraestructura , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Thermus thermophilus/genética
14.
Biochemistry ; 47(34): 8828-39, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18672904

RESUMEN

Most of our understanding of ribosome function is based on experiments utilizing translational components from Escherichia coli. It is not clear to which extent the details of translation mechanisms derived from this single organism are true for all bacteria. Here we investigate translation factor-dependent reactions of initiation and elongation in a reconstituted translation system from a Gram-positive bacterium Mycobacterium smegmatis. This organism was chosen because mutations in rRNA have very different phenotypes in E. coli and M. smegmatis, and the docking site for translational GTPases, the L12 stalk, is extended in the ribosomes from M. smegmatis compared to E. coli. M. smegmatis genes coding for IF1, IF2, IF3, EF-G, and EF-Tu were identified by sequence alignments; the respective recombinant proteins were prepared and studied in a variety of biochemical and biophysical assays with M. smegmatis ribosomes. We found that the activities of initiation and elongation factors and the rates of elemental reactions of initiation and elongation of protein synthesis are remarkably similar with M. smegmatis and E. coli components. The data suggest a very high degree of conservation of basic translation mechanisms, probably due to coevolution of the ribosome components and translation factors. This work establishes the reconstituted translation system from individual purified M. smegmatis components as an alternative to that from E. coli to study the mechanisms of translation and to test the action of antibiotics against Gram-positive bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mycobacterium smegmatis/genética , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/genética , Factor 3 Procariótico de Iniciación/metabolismo , Factores Procarióticos de Iniciación , Unión Proteica , ARN de Transferencia de Fenilalanina/metabolismo , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Homología de Secuencia de Aminoácido
15.
EMBO J ; 27(12): 1706-17, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18497739

RESUMEN

We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine-Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G.


Asunto(s)
Factor 1 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Acetilación , Secuencia de Bases , Sistema Libre de Células , Escherichia coli , Cinética , Datos de Secuencia Molecular , Factor G de Elongación Peptídica/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN de Transferencia/metabolismo
16.
Mol Cell ; 29(2): 180-90, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18243113

RESUMEN

The mechanism of translation in eubacteria and organelles is thought to be similar. In eubacteria, the three initiation factors IF1, IF2, and IF3 are vital. Although the homologs of IF2 and IF3 are found in mammalian mitochondria, an IF1 homolog has never been detected. Here, we show that bovine mitochondrial IF2 (IF2(mt)) complements E. coli containing a deletion of the IF2 gene (E. coli DeltainfB). We find that IF1 is no longer essential in an IF2(mt)-supported E. coli DeltainfB strain. Furthermore, biochemical and molecular modeling data show that a conserved insertion of 37 amino acids in the IF2(mt) substitutes for the function of IF1. Deletion of this insertion from IF2(mt) supports E. coli for the essential function of IF2. However, in this background, IF1 remains essential. These observations provide strong evidence that a single factor (IF2(mt)) in mammalian mitochondria performs the functions of two eubacterial factors, IF1 and IF2.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Mitocondriales/metabolismo , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Animales , Bovinos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factores Eucarióticos de Iniciación/genética , Eliminación de Gen , Prueba de Complementación Genética , Proteínas Mitocondriales/genética , Modelos Moleculares , Factor 1 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/genética , Homología de Secuencia de Aminoácido
17.
Mol Microbiol ; 64(3): 807-21, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17462025

RESUMEN

Escherichia coli infA is transcribed from two promoters, P1 and P2, into a longer and a shorter mRNA encoding translation initiation factor IF1. Although P1 is intrinsically stronger than P2, the shorter half-life of its transcripts causes the steady-state level of the P2 transcript to be substantially higher than that of P1 during growth at 37 degrees C. After cold-shock, de novo transcription and translation of infA contribute to the transient increase of the IF1/ribosomes ratio, which is partially responsible for translational bias consisting in the preferential translation of cold-shock mRNAs in the cold. Cold-stress induction of infA expression is mainly due to the high activity of P1 at low temperature, which is further increased by transcriptional stimulation by CspA and by an increased transcript stability. Furthermore, the longer infA mRNA originating from P1 is preferentially translated at low temperature by the translational machinery of cold-shocked cells. The increased level of IF1 during cold adaptation is essential for overcoming the higher stability of the 70S monomers at low temperature and for providing a sufficient pool of dissociated 30S subunits capable of initiating translation.


Asunto(s)
Frío , Proteínas de Escherichia coli/genética , Factor 1 Procariótico de Iniciación/genética , Biosíntesis de Proteínas , Transcripción Genética , Adaptación Fisiológica , Northern Blotting , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/fisiología , Regiones Promotoras Genéticas/genética , Unión Proteica , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo , Proteínas Ribosómicas/metabolismo , Temperatura
18.
J Bacteriol ; 189(11): 4087-93, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17384193

RESUMEN

Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap between these proteins. Certain members of the CspA family of cold shock proteins act as nucleic acid chaperones: they melt secondary structures in nucleic acids and act as transcription antiterminators. This activity may help the cell to acclimatize to low temperatures, since cold-induced stabilization of secondary structures in nascent RNA can impede transcription elongation. Here we show that the E. coli translation initiation factor, IF1, also has RNA chaperone activity and acts as a transcription antiterminator in vivo and in vitro. We further show that the RNA chaperone activity of IF1, although critical for transcription antitermination, is not essential for its role in supporting cell growth, which presumably functions in translation. The results thus indicate that IF1 may participate in transcription regulation and that cross talk and/or functional overlap may exist between the Csp family proteins, known to be involved in transcription regulation at cold shock, and S1 domain proteins, known to function in translation.


Asunto(s)
Transcripción Genética/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Histidina/genética , Histidina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología , Mutagénesis Sitio-Dirigida , Mutación , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/fisiología , Unión Proteica
19.
Rev. esp. cardiol. Supl. (Ed. impresa) ; 7(supl.D): 32d-45d, 2007. graf, tab
Artículo en Español | IBECS | ID: ibc-166220

RESUMEN

La frecuencia cardiaca es el principal determinante de las demandas miocárdicas de O2 y del flujo sanguíneo coronario. La frecuencia cardiaca depende de la actividad eléctrica espontánea de las células marcapasos del nódulo sinoauricular. Estas células presentan una fase de despolarización diastólica que desplaza el potencial de membrana hacia su valor umbral y se inicia un nuevo potencial de acción que se propaga a través del miocardio y produce una respuesta contráctil. La corriente If de entrada de iones Na+ y K+ a través de canales activados por la hiperpolarización y modulados por nucleótidos cíclicos (HCN) es la principal determinante de la inclinación de la fase de lenta despolarización diastólica. Los canales se abren cuando el potencial de membrana se hiperpolariza y se modulan por la concentración celular de adenosinmonofosfato cíclico. La ivabradina es un bloqueador específico de la If. Para ello debe atravesar la membrana y alcanzar su receptor, que se encuentra en la boca intracelular del poro del canal. Como consecuencia, produce una reducción dependiente de la dosis de la frecuencia cardiaca, que reduce las demandas miocárdicas de O2 y aumenta el flujo sanguíneo coronario. Sin embargo, a concentraciones terapéuticas no inhibe otras corrientes iónicas cardiacas, razón por la que no modifica la presión arterial, la contractilidad o las propiedades electrofisiológicas cardiacas. En este artículo se revisa el mecanismo de acción, las propiedades farmacocinéticas y farmacodinámicas y las reacciones adversas y contraindicaciones de la ivabradina (AU)


The heart rate is the main determinant of both myocardial oxygen demand and coronary blood flow. Heart rate is determined by spontaneous electrical activity in the pacemaker cells of the sinoatrial node. These cells exhibit a diastolic depolarization phase that drives the membrane potential towards the threshold value for initiating a new action potential, which propagates throughout the myocardium and triggers a contractile response. The If current, an inward current of Na+ and K+ ions through hyperpolarization- activated cyclic-nucleotide-gated (HCN) channels, is the main determinant of the slope of the slow diastolic depolarization phase. These channels open in response to membrane hyperpolarization and are modulated by the intracellular cAMP concentration. Ivabradine specifically blocks the If current. To do so, it crosses the membrane and binds to a receptor located on the intracellular side of the channel pore. As a result, ivabradine produces a dose-dependent decrease in heart rate that reduces myocardial oxygen demand and increases coronary blood flow. However, at therapeutic concentrations, it does not affect other cardiac ionic currents, which is why ivabradine does not alter blood pressure, cardiac contractility, or cardiac electrophysiological parameters. This article reviews ivabradine’s mechanism of action, pharmacodynamic and pharmacokinetic properties, side effects, and interactions (AU)


Asunto(s)
Humanos , Frecuencia Cardíaca , Factor 1 Procariótico de Iniciación/administración & dosificación , Factor 1 Procariótico de Iniciación/metabolismo , Angina de Pecho/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Automatismo/tratamiento farmacológico , Relojes Biológicos , Electrofisiología Cardíaca/métodos , Electrofisiología Cardíaca/tendencias , Contracción Miocárdica
20.
FEBS Lett ; 580(2): 539-44, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16405963

RESUMEN

Initiation factor 1 (IF1) is an essential protein in Escherichia coli involved in the initiation step of protein synthesis. The protein level of IF1 increases when E. coli cells are subjected to cold shock, however, it remains unclear as to how this increase occurs. The infA gene encoding IF1 contains two promoters, the distal P1 and the proximal P2 promoter. In this study, we found that infA mRNA was greatly increased, and that this increase resulted from transcriptional activation of P1, not P2, during cold shock although stability of transcripts from both promoters concomitantly increased.


Asunto(s)
Frío , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor 1 Procariótico de Iniciación , Regiones Promotoras Genéticas , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Estabilidad del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA