Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Autophagy ; 19(7): 2111-2142, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719671

RESUMEN

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Endorribonucleasas/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Autofagia/genética , Calcineurina/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Dodecil Sulfato de Sodio/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Lisosomas/metabolismo
2.
Parasit Vectors ; 15(1): 383, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271393

RESUMEN

BACKGROUND: The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS: We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS: In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS: Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.


Asunto(s)
Aedes , Animales , Aedes/genética , Aedes/metabolismo , Transportador de Aminoácidos Catiónicos 1/genética , Transportador de Aminoácidos Catiónicos 1/metabolismo , ARN Bicatenario/metabolismo , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/genética , Fertilidad
3.
Protein Sci ; 31(9): e4393, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36250475

RESUMEN

Protein translation is a foundational attribute of all living cells. The translation function carried out by the ribosome critically depends on an assortment of protein interaction partners, collectively referred to as the translation machinery. Various studies suggest that the diversification of the translation machinery occurred prior to the last universal common ancestor, yet it is unclear whether the predecessors of the extant translation machinery factors were functionally distinct from their modern counterparts. Here we reconstructed the shared ancestral trajectory and subsequent evolution of essential translation factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation factor IF2 (aIF5B/eIF5B). Based upon their similar functions and structural homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu proteins and reconstructed ancestral sequences corresponding to the deepest nodes in their shared evolutionary history, including the last common IF2 and EF-Tu ancestor. By identifying the residue and domain substitutions, as well as structural changes along the phylogenetic history, we developed an evolutionary scenario for the origins, divergence and functional refinement of EF-Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2 and EF-Tu was an IF2-like GTPase protein. Given the central importance of the translation machinery to all cellular life, its earliest evolutionary constraints and trajectories are key to characterizing the universal constraints and capabilities of cellular evolution.


Asunto(s)
Factor Tu de Elongación Peptídica , Factor 2 Procariótico de Iniciación , GTP Fosfohidrolasas/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Filogenia , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Proteínas/metabolismo , Ribosomas/metabolismo
4.
Methods Mol Biol ; 2428: 89-99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171475

RESUMEN

The translation initiation factor eIF2 is critical for protein synthesis initiation, and its regulation is central to the integrated stress response (ISR). eIF2 is a G protein, and the activity is regulated by its GDP or GTP-binding status, such that only GTP-bound eIF2 has high affinity for initiator methionyl tRNA. In the ISR, regulatory signaling reduces the availability of eIF2-GTP and so downregulates protein synthesis initiation in cells. Fluorescence spectroscopy can be used as an analytical tool to study protein-ligand interactions in vitro. Here we describe methods to purify eIF2 and assays of its activity, employing analogs of GDP, GTP, and methionyl initiator tRNA ligands to accurately measure their binding affinities.


Asunto(s)
Factor 2 Procariótico de Iniciación , ARN de Transferencia de Metionina , Factor 2 Eucariótico de Iniciación/metabolismo , Nucleótidos de Guanina , Ligandos , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo
5.
Autophagy ; 18(10): 2350-2367, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35130104

RESUMEN

Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: ß-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.


Asunto(s)
Autofagia , Ebolavirus , Actinas/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/farmacología , Calnexina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Calreticulina/farmacología , Cicloheximida , Cisteína/metabolismo , Disulfuros , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hemaglutininas/metabolismo , Hemaglutininas/farmacología , Histona Desacetilasa 6/genética , Péptidos y Proteínas de Señalización Intercelular , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacología , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/farmacología , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , ARN Bicatenario/metabolismo , ARN Bicatenario/farmacología , Proteína Sequestosoma-1/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacología , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacología , Ubiquitinas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , alfa-Manosidasa/genética , alfa-Manosidasa/metabolismo , alfa-Manosidasa/farmacología
6.
J Biol Chem ; 298(2): 101583, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031321

RESUMEN

The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2ß subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2ß with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Factor 2 Procariótico de Iniciación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Humanos , Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Autophagy ; 18(4): 841-859, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424124

RESUMEN

The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3-/-/perk-/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease.Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.


Asunto(s)
Autofagia , Úlcera de Buruli , Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrólidos , Ratones , Factor 2 Procariótico de Iniciación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales de Translocación SEC/metabolismo , Proteína Sequestosoma-1/metabolismo , Ubiquitina/metabolismo
8.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948034

RESUMEN

Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , GTP Fosfohidrolasas/metabolismo , Genes Letales , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Fenotipo , Factor 2 Procariótico de Iniciación/genética , Conformación Proteica , Dominios Proteicos , Ribosomas/química , Ribosomas/metabolismo
9.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161576

RESUMEN

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(27): 15565-15572, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32576694

RESUMEN

Many bacteria exist in a state of metabolic quiescence where energy consumption must be minimized so as to maximize available resources over a potentially extended period of time. As protein synthesis is the most energy intensive metabolic process in a bacterial cell, it would be an appropriate target for down-regulation during the transition from growth to quiescence. We observe that when Bacillus subtilis exits rapid growth, a subpopulation of cells emerges with very low protein synthetic activity. This phenotypic heterogeneity requires the production of the nucleotides (p)ppGpp, which we show are sufficient to inhibit protein synthesis in vivo. We then show that one of these molecules, ppGpp, inhibits protein synthesis by preventing the allosteric activation of the essential GTPase Initiation Factor 2 (IF2) during translation initiation. Finally, we demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (p)ppGpp and IF2.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/metabolismo , Regulación Alostérica , División Celular
11.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192132

RESUMEN

Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,ß,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Proteínas Portadoras/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Evolución Molecular , Técnicas de Silenciamiento del Gen , Humanos , Mamíferos , Ratones Noqueados , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Transducción de Señal , Estrés Fisiológico , Relación Estructura-Actividad , Sitio de Iniciación de la Transcripción , Levaduras/genética , Levaduras/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(18): 4649-4654, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29686090

RESUMEN

The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12-IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12-IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners-all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/química , Proteínas Ribosómicas/química , Secuencias de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
13.
RNA Biol ; 15(4-5): 604-613, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28914580

RESUMEN

Translation begins at AUG, GUG, or UUG codons in bacteria. Start codon recognition occurs in the P site, which may help explain this first-position degeneracy. However, the molecular basis of start codon specificity remains unclear. In this study, we measured the codon dependence of 30S•mRNA•tRNAfMet and 30S•mRNA•tRNAMet complex formation. We found that complex stability varies over a large range with initiator tRNAfMet, following the same trend as reported previously for initiation rate in vivo (AUG > GUG, UUG > CUG, AUC, AUA > ACG). With elongator tRNAMet, the codon dependence of binding differs qualitatively, with virtually no discrimination between GUG and CUG. A unique feature of initiator tRNAfMet is a series of three G-C basepairs in the anticodon stem, which are known to be important for efficient initiation in vivo. A mutation targeting the central of these G-C basepairs causes the mRNA binding specificity pattern to change in a way reminiscent of elongator tRNAMet. Unexpectedly, for certain complexes containing fMet-tRNAfMet, we observed mispositioning of mRNA, such that codon 2 is no longer programmed in the A site. This mRNA mispositioning is exacerbated by the anticodon stem mutation and suppressed by IF2. These findings suggest that both IF2 and the unique anticodon stem of fMet-tRNAfMet help constrain mRNA positioning to set the correct reading frame during initiation.


Asunto(s)
Escherichia coli/genética , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/genética , Sistemas de Lectura , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Codón Iniciador , Escherichia coli/metabolismo , Cinética , Mutación , Conformación de Ácido Nucleico , Factor 2 Procariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
14.
RNA Biol ; 15(3): 303-307, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099338

RESUMEN

Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. 1 Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.


Asunto(s)
Aciltransferasas/metabolismo , Escherichia coli/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina/química , Acetilación , Aciltransferasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metionina/química , Modelos Moleculares , Factor 2 Procariótico de Iniciación/metabolismo
15.
FEBS J ; 284(11): 1631-1643, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342293

RESUMEN

Ribosomal protein L7/L12 is associated with translation initiation, elongation, and termination by the 70S ribosome. The guanosine 5' triphosphate hydrolase (GTPase) activity of elongation factor G (EF-G) requires the presence of L7/L12, which is critical for ribosomal translocation. Here, we have developed new methods for the complete depletion of L7/L12 from Escherichia coli 70S ribosomes to analyze the effect of L7/L12 on the activities of the GTPase factors EF-G, RF3, IF2, and LepA. Upon removal of L7/L12 from ribosomes, the GTPase activities of EF-G, RF3, and IF2 decreased to basal levels, while the activity of LepA decreased marginally. Upon reconstitution of ribosomes with recombinant L12, the GTPase activities of all GTPases returned to full activity. Moreover, ribosome binding assays indicated that EF-G, RF3, and IF2 require L7/L12 for stable binding in the GTP state, and LepA retained > 50% binding. Lastly, an EF-G∆G' truncation mutant possessed ribosome-dependent GTPase activity, which was insensitive to L7/L12. Our results indicate that L7/L12 is required for stable binding of ribosome-dependent GTPases that harbor direct interactions to the L7/L12 C-terminal domains, either through a G' domain (EF-G, RF3) or a unique N-terminal domain (IF2). Furthermore, we hypothesize this interaction is concomitant with counterclockwise ribosomal intersubunit rotation, which is required for translocation, initiation, and post-termination.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Factores de Terminación de Péptidos/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Activación Enzimática , Proteínas de Escherichia coli/genética , Hidrólisis , Mutagénesis Sitio-Dirigida , Factores de Iniciación de Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/genética
16.
Protein Sci ; 25(9): 1722-33, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364543

RESUMEN

Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two ß-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Modelos Moleculares , Factor 2 Procariótico de Iniciación/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Dominios Proteicos , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
17.
Biochimie ; 121: 197-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26700147

RESUMEN

In Archaea and Eukaryotes, the binding of Met-tRNAi(Met) to the P-site of the ribosome is mediated by translation initiation factor 2 (a/eIF2) which consists of three subunits: α, ß and γ. Here, we present the high-resolution structure of intact aIF2γ from Sulfolobus solfataricus (SsoIF2γ) in complex with GTP analog, GDPCP. The comparison of the nucleotide-binding pockets in this structure and in the structure of the ribosome-bound form of EF-Tu reveals their close conformation similarity. The nucleotide-binding pocket conformation observed in this structure could be consider as corresponding to intermediate conformation of EF-Tu nucleotide-binding pocket in its transition from the GTP-bound form to the GDP-bound one. Three clusters of well defined water molecules are associated with amino acid residues of the SsoIF2γ nucleotide-binding pocket and stabilize its conformation. We suppose that two water bridges between the oxygen atoms of the GTP γ-phosphate and negatively charged residues of the pocket can serve as ways to transmit protons arising from the catalytic reaction.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Sulfolobus solfataricus/metabolismo , Catálisis , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factor 2 Procariótico de Iniciación/química , Unión Proteica , Ribosomas/metabolismo , Solventes/química , Agua/metabolismo , Difracción de Rayos X
18.
Proc Natl Acad Sci U S A ; 112(52): 15874-9, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668356

RESUMEN

Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Conformación Molecular , Factor 1 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/química
19.
J Mol Biol ; 427(9): 1819-34, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25596426

RESUMEN

Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
20.
J Mol Biol ; 427(9): 1801-18, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25308340

RESUMEN

Ribosomal subunit joining is a key checkpoint in the bacterial translation initiation pathway during which initiation factors (IFs) regulate association of the 30S initiation complex (IC) with the 50S subunit to control formation of a 70S IC that can enter into the elongation stage of protein synthesis. The GTP-bound form of IF2 accelerates subunit joining, whereas IF3 antagonizes subunit joining and plays a prominent role in maintaining translation initiation fidelity. The molecular mechanisms through which IF2 and IF3 collaborate to regulate the efficiency of 70S IC formation, including how they affect the dynamics of subunit joining, remain poorly defined. Here, we use single-molecule fluorescence resonance energy transfer to monitor the interactions between IF2 and the GTPase-associated center (GAC) of the 50S subunit during real-time subunit joining reactions in the absence and presence of IF3. In the presence of IF3, IF2-mediated subunit joining becomes reversible, and subunit joining events cluster into two distinct classes corresponding to formation of shorter- and longer-lifetime 70S ICs. Inclusion of IF3 within the 30S IC was also found to alter the conformation of IF2 relative to the GAC, suggesting that IF3's regulatory effects may stem in part from allosteric modulation of IF2-GAC interactions. The results are consistent with a model in which IF3 can exert control over the efficiency of subunit joining by modulating the conformation of the 30S IC, which in turn influences the formation of stabilizing intersubunit contacts and thus the reaction's degree of reversibility.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 3 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...