Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Dev Biol ; 415(2): 261-277, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27060628

RESUMEN

The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure.


Asunto(s)
Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Glucuronosiltransferasa/fisiología , Proteínas Hedgehog/fisiología , Transducción de Señal , Cráneo/embriología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular , Factor 3 de Crecimiento de Fibroblastos/deficiencia , Factor 3 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Glucuronosiltransferasa/genética , Proteínas Hedgehog/genética , Hialuronano Sintasas , Mesodermo/embriología , Mesodermo/metabolismo , Cráneo/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
3.
Circulation ; 130(4): 298-307, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24920722

RESUMEN

BACKGROUND: Fibroblast growth factor-23 (FGF-23) is a hormone that promotes urinary phosphate excretion and regulates vitamin D metabolism. Circulating FGF-23 concentrations increase markedly in chronic kidney disease and are associated with increased risk of clinical cardiovascular events. FGF-23 may promote atrial fibrillation (AF) by inducing left ventricular hypertrophy and diastolic and left atrial dysfunction. METHODS AND RESULTS: We tested the associations of circulating FGF-23 concentration with incident AF among 6398 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) and 1350 participants in the Cardiovascular Health Study (CHS), all free of clinical cardiovascular disease at baseline. Over a median of 7.7 and 8.0 years of follow-up, we observed 291 and 229 incident AF events in MESA and CHS, respectively. In multivariable Cox proportional hazards models, each 2-fold-higher FGF-23 concentration was associated with a 41% higher risk of incident AF in MESA (hazard ratio, 1.41; 95% confidence interval, 1.13-1.76; P=0.003) and a 30% higher risk of incident AF in CHS (hazard ratio, 1.30; 95% confidence interval, 1.05-1.61; P=0.016) after adjustment for potential confounding characteristics, including kidney disease. Serum phosphate concentration was significantly associated with incident AF in MESA (hazard ratio, 1.15 per 0.5 mg/dL; 95% confidence interval, 1.02-1.31; P=0.023) but not CHS. In MESA, an association of low estimated glomerular filtration rate with incident AF was partially attenuated by adjustment for FGF-23. CONCLUSION: Higher circulating FGF-23 concentration is associated with incident AF and may, in part, explain the link between chronic kidney disease and AF.


Asunto(s)
Fibrilación Atrial/sangre , Factor 3 de Crecimiento de Fibroblastos/sangre , Fosfatos/metabolismo , Insuficiencia Renal Crónica/sangre , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Comorbilidad , Etnicidad/estadística & datos numéricos , Femenino , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factor-23 de Crecimiento de Fibroblastos , Estudios de Seguimiento , Tasa de Filtración Glomerular , Insuficiencia Cardíaca/epidemiología , Humanos , Hipertrofia Ventricular Izquierda/sangre , Masculino , Persona de Mediana Edad , Fosfatos/farmacocinética , Modelos de Riesgos Proporcionales , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Factores de Riesgo , Estados Unidos/epidemiología , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular , Vitamina D/análogos & derivados , Vitamina D/biosíntesis
4.
Dev Dyn ; 243(10): 1275-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24677486

RESUMEN

BACKGROUND: Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. RESULTS: We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. CONCLUSIONS: fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction.


Asunto(s)
Región Branquial/embriología , Oído/embriología , Inducción Embrionaria/genética , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Mesodermo/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Región Branquial/metabolismo , Embrión no Mamífero , Factor 10 de Crecimiento de Fibroblastos/fisiología , Pez Cebra/embriología , Pez Cebra/genética
5.
Int J Pharm ; 459(1-2): 10-8, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24275448

RESUMEN

Polyamidoamine (PAMAM) is one of the widely employed non-viral vectors in gene therapy research, and shows excellent biocompatibility and relatively low cytotoxicity. However, it has poor transfection efficiency compared with that of polyethylenimine (PEI, 25 kDa). To enhance the gene expression efficiency, we introduced the RRRK peptide from mouse fibroblast growth factor 3 (FGF3) to PAMAM, which is a known nuclear localization signal (NLS). We synthesized PAMAM-KRRR and PAMAM-RRRK to verify the difference of the induced functional status from reversal of the N-terminus. PAMAM containing the FGF3 peptide showed a transfection efficiency corresponding to that of PEI in HEK293, and HeLa cells, and showed much higher gene expression capacity than that of PEI in NIH3T3 cells with relatively decreased cytotoxicity. These results imply that introduction of the FGF 3 peptide has the potential to provide a novel PAMAM-based vector by enhancing its gene expression efficiency.


Asunto(s)
Dendrímeros/química , Factor 3 de Crecimiento de Fibroblastos/fisiología , Técnicas de Transferencia de Gen , Aminoácidos/química , Animales , Unión Competitiva , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , ADN/química , Factor 3 de Crecimiento de Fibroblastos/genética , Fibroblastos/metabolismo , Células HEK293 , Heparina/metabolismo , Humanos , Luz , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Péptidos/química , Dispersión de Radiación , Transducción de Señal , Transfección , Transgenes/genética
6.
Development ; 140(5): 1111-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23404108

RESUMEN

The neurohypophysis is a crucial component of the hypothalamo-pituitary axis, serving as the site of release of hypothalamic neurohormones into a plexus of hypophyseal capillaries. The growth of hypothalamic axons and capillaries to the forming neurohypophysis in embryogenesis is therefore crucial to future adult homeostasis. Using ex vivo analyses in chick and in vivo analyses in mutant and transgenic zebrafish, we show that Fgf10 and Fgf3 secreted from the forming neurohypophysis exert direct guidance effects on hypothalamic neurosecretory axons. Simultaneously, they promote hypophyseal vascularisation, exerting early direct effects on endothelial cells that are subsequently complemented by indirect effects. Together, our studies suggest a model for the integrated neurohemal wiring of the hypothalamo-neurohypophyseal axis.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Neovascularización Fisiológica/genética , Neurohipófisis/irrigación sanguínea , Neurohipófisis/inervación , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Embrión de Pollo/irrigación sanguínea , Embrión de Pollo/inervación , Embrión de Pollo/metabolismo , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/inervación , Embrión no Mamífero/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Sistema Hipotálamo-Hipofisario/irrigación sanguínea , Sistema Hipotálamo-Hipofisario/embriología , Sistema Hipotálamo-Hipofisario/metabolismo , Modelos Biológicos , Neovascularización Fisiológica/fisiología , Neurohipófisis/embriología , Vertebrados/embriología , Vertebrados/genética , Vertebrados/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Development ; 138(18): 3977-87, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21831919

RESUMEN

Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia(-/-) (fgf3(-/-)) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear.


Asunto(s)
Tipificación del Cuerpo/genética , Oído/embriología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Hedgehog/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de los fármacos , Oído/fisiología , Oído Interno/efectos de los fármacos , Oído Interno/embriología , Oído Interno/metabolismo , Embrión no Mamífero , Inducción Embrionaria/genética , Inhibidores Enzimáticos/farmacología , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
8.
Dev Biol ; 356(2): 383-97, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21664901

RESUMEN

Heart development requires contributions from, and coordinated signaling interactions between, several cell populations, including splanchnic and pharyngeal mesoderm, postotic neural crest and the proepicardium. Here we report that Fgf3 and Fgf10, which are expressed dynamically in and near these cardiovascular progenitors, have redundant and dosage sensitive requirements in multiple aspects of early murine cardiovascular development. Embryos with Fgf3(-/+);Fgf10(-/-), Fgf3(-/-);Fgf10(-/+) and Fgf3(-/-);Fgf10(-/-) genotypes formed an allelic series of increasing severity with respect to embryonic survival, with double mutants dead by E11.5. Morphologic analysis of embryos with three mutant alleles at E11.5-E13.5 and double mutants at E9.5-E11.0 revealed multiple cardiovascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricular myocardium, dorsal mesenchymal protrusion, pulmonary arteries, epicardium and fourth pharyngeal arch artery. Assessment of molecular markers in E8.0-E10.5 double mutants revealed abnormalities in each progenitor population, and suggests that Fgf3 and Fgf10 are not required for specification of cardiovascular progenitors, but rather for their normal developmental coordination. These results imply that coding or regulatory mutations in FGF3 or FGF10 could contribute to human congenital heart defects.


Asunto(s)
Vasos Coronarios/fisiología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Corazón/embriología , Neovascularización Fisiológica , Animales , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Ratones , Cresta Neural/anomalías , Embarazo , Proteínas de Dominio T Box/genética
9.
Development ; 138(12): 2613-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21610037

RESUMEN

The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth.


Asunto(s)
Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Neurohipófisis/embriología , Células Madre/citología , Animales , Tipificación del Cuerpo , Embrión de Pollo , Factor 3 de Crecimiento de Fibroblastos/análisis , Neurohipófisis/citología , Neurohipófisis/crecimiento & desarrollo , Factores de Transcripción SOXB1/análisis , Factores de Transcripción SOXB1/fisiología , Células Madre/fisiología
10.
Cancer Metastasis Rev ; 28(3-4): 335-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20012924

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a process that plays essential roles in development and wound healing that is characterized by loss of homotypic adhesion and cell polarity and increased invasion and migration. At the molecular level, EMT is characterized by loss of E-cadherin and increased expression of several transcriptional repressors of E-cadherin expression (Zeb-1, Zeb-2, Twist, Snail, and Slug). Early work established that loss of E-cadherin and increased expression of MMP-9 was associated with a poor clinical outcome in patients with urothelial tumors, suggesting that EMT might also be associated with bladder cancer progression and metastasis. More recently, we have used global gene expression profiling to characterize the molecular heterogeneity in human urothelial cancer cell lines (n = 20) and primary patient tumors, and unsupervised clustering analyses revealed that the cells naturally segregate into two discrete "epithelial" and "mesenchymal" subsets, the latter consisting entirely of muscle-invasive tumors. Importantly, sensitivity to inhibitors of the epidermal growth factor receptor (EGFR) or type-3 fibroblast growth factor receptor (FGFR3) was confined to the "epithelial" subset, and sensitivity to EGFR inhibitors could be reestablished by micro-RNA-mediated molecular reversal of EMT. The results suggest that EMT coordinately regulates drug resistance and muscle invasion/metastasis in urothelial cancer and is a dominant feature of overall cancer biology.


Asunto(s)
Carcinoma de Células Transicionales/patología , Transdiferenciación Celular/fisiología , Resistencia a Antineoplásicos , Epitelio/patología , Mesodermo/patología , Neoplasias de la Vejiga Urinaria/patología , Cadherinas/fisiología , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Línea Celular Tumoral/patología , Progresión de la Enfermedad , Receptores ErbB/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/fisiología , Modelos Biológicos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/fisiología , Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Cicatrización de Heridas/fisiología
11.
PLoS Biol ; 7(10): e1000214, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19823566

RESUMEN

During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior) axes is required for correct spatial representation in the retinotectal map. However, it is unknown how specification of axial cell positions in the retina occurs during the complex process of early eye morphogenesis. Studying zebrafish embryos, we show that morphogenetic tissue rearrangements during eye evagination result in progenitor cells in the nasal half of the retina primordium being brought into proximity to the sources of three fibroblast growth factors, Fgf8/3/24, outside the eye. Triple-mutant analysis shows that this combined Fgf signal fully controls nasal retina identity by regulating the nasal transcription factor Foxg1. Surprisingly, nasal-temporal axis specification occurs very early along the dorsal-ventral axis of the evaginating eye. By in vivo imaging GFP-tagged retinal progenitor cells, we find that subsequent eye morphogenesis requires gradual tissue compaction in the nasal half and directed cell movements into the temporal half of the retina. Balancing these processes drives the progressive alignment of the nasal-temporal retina axis with the anterior-posterior body axis and is controlled by a feed-forward effect of Fgf signaling on Foxg1-mediated cell cohesion. Thus, the mechanistic coupling and dynamic synchronization of tissue patterning with morphogenetic cell behavior through Fgf signaling leads to the graded allocation of cell positional identity in the eye, underlying retinotectal map formation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/embriología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Retina/embriología , Proteínas de Pez Cebra/fisiología , Animales , Femenino , Factores de Transcripción Forkhead/fisiología , Transducción de Señal/fisiología , Pez Cebra
12.
Mech Dev ; 126(10): 873-81, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19619645

RESUMEN

Several members of the FGF gene family have been shown to intervene from various tissue sources to direct otic placode induction and otic vesicle formation. In this study we define the roles of FGF8, found in different expression domains during this process, in mice and chickens. By conditional inactivation of Fgf8 in distinct tissue compartments we demonstrate that Fgf8 is required in the mesoderm and endoderm during early inner ear development. In the chicken embryo, overexpression of Fgf8 from various tissue sources during otic specification leads to a loss of otic tissue. In contrast ectopic overexpression of Fgf10, a major player during murine otic induction, does not influence otic vesicle formation in chicken embryos but results in the formation of ectopic structures with a non-otic character. This study underlines the crucial role of a defined Fgf8 expression pattern controlling inner ear formation in vertebrates.


Asunto(s)
Oído Interno/embriología , Factor 8 de Crecimiento de Fibroblastos/fisiología , Animales , Embrión de Pollo , Oído Interno/fisiología , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Transgénicos
13.
Eur J Hum Genet ; 17(1): 14-21, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18701883

RESUMEN

We identified a homozygous missense mutation (c.196G-->T) in fibroblast growth factor 3 (FGF3) in 21 affected individuals from a large extended consanguineous Saudi family, phenotypically characterized by autosomal recessive syndromic congenital sensorineural deafness, microtia and microdontia. All affected family members are descendents of a common ancestor who had lived six generations ago in a geographically isolated small village. This is the second report of FGF3 involvement in syndromic deafness in humans, and independently confirms the gene's positive role in inner ear development. The c.196G-->T mutation results in substitution of glycine by cysteine at amino acid 66 (p.G66C). This residue is conserved in several species and across 18 FGF family members. Conserved glycine/proline residues are central to the 'beta-trefoil fold' characteristic of the secondary structure of FGF family proteins and substitution of these residues is likely to disrupt structure and consequently function.


Asunto(s)
Anomalías Múltiples/genética , Sordera/genética , Oído Externo/anomalías , Oído Interno/anomalías , Factor 3 de Crecimiento de Fibroblastos/genética , Pérdida Auditiva Sensorineural/genética , Anomalías Dentarias/genética , Adolescente , Adulto , Sustitución de Aminoácidos , Niño , Preescolar , Mapeo Cromosómico , Consanguinidad , Femenino , Factor 3 de Crecimiento de Fibroblastos/química , Factor 3 de Crecimiento de Fibroblastos/fisiología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Síndrome , Adulto Joven
14.
Dev Biol ; 322(1): 167-78, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18703040

RESUMEN

The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium, and more particularly the adjacent segmented hindbrain, have been implicated in specifying structures along the anteroposterior and dorsoventral axes of the inner ear. In this work we have first characterized the generation and axial specification of the otic neurogenic domain, and second, we have investigated the effects of the mutation of kreisler/MafB--a gene transiently expressed in rhombomeres 5 and 6 of the developing hindbrain--in early otic patterning and cell specification. We show that kr/kr embryos display an expansion of the otic neurogenic domain, due to defects in otic patterning. Although many reports have pointed to the role of FGF3 in otic regionalisation, we provide evidence that FGF3 is not sufficient to govern this process. Neither Krox20 nor Fgf3 mutant embryos, characterized by a downregulation or absence of Fgf3 in r5 and r6, display ectopic neuroblasts in the otic primordium. However, Fgf3-/-Fgf10-/- double mutants show a phenotype very similar to kr/kr embryos: they present ectopic neuroblasts along the AP and DV otic axes. Finally, partial rescue of the kr/kr phenotype is obtained when Fgf3 or Fgf10 are ectopically expressed in the hindbrain of kr/kr embryos. These results highlight the importance of hindbrain-derived signals in the regulation of otic neurogenesis.


Asunto(s)
Oído Interno/embriología , Oído Interno/inervación , Factor 3 de Crecimiento de Fibroblastos/fisiología , Morfogénesis/fisiología , Rombencéfalo/embriología , Transducción de Señal/fisiología , Animales , Apoptosis , Proliferación Celular , Oído Interno/citología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/genética , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Morfogénesis/genética , Neuronas/citología , Fenotipo , Rombencéfalo/citología , Rombencéfalo/metabolismo
15.
Development ; 135(16): 2695-705, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18599504

RESUMEN

The collective migration of cells in the form of cohesive tissues is a hallmark of both morphogenesis and repair. The extrinsic cues that direct these complex migrations usually act by regulating the dynamics of a specific subset of cells, those at the leading edge. Given that normally the function of tissue migration is to lay down multicellular structures, such as branched epithelial networks or sensory organs, it is surprising how little is known about the mechanisms that organize cells behind the leading edge. Cells of the zebrafish lateral line primordium switch from mesenchyme-like leader cells to epithelial rosettes that develop into mechanosensory organs. Here, we show that this transition is regulated by an Fgf signaling circuit that is active within the migrating primordium. Point sources of Fgf ligand drive surrounding cells towards a ;non-leader' fate by increasing their epithelial character, a prerequisite for rosette formation. We demonstrate that the dynamic expression of Fgf ligands determines the spatiotemporal pattern of epithelialization underlying sensory organ formation in the lateral line. Furthermore, this work uncovers a surprising link between internal tissue organization and collective migration.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Mesodermo/citología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión no Mamífero/fisiología , Epitelio/fisiología , Mesodermo/fisiología , Morfogénesis/fisiología , Transducción de Señal , Pez Cebra/fisiología
16.
Med Sci (Paris) ; 21(11): 954-61, 2005 Nov.
Artículo en Francés | MEDLINE | ID: mdl-16274647

RESUMEN

Skeletal development is a highly sophisticated process involving, as a first step, migration and condensation of mesenchymal cells into osteoprogenitor cells. These cells further differentiate into chondrocytes and osteoblasts through multiple differentiation stages requiring a set of specific transcriptional factors. Defective endochondral ossification in human is associated with a large number of inherited skeletal dysplasias caused by mutations in genes encoding extracellular matrix components, growth factors and their receptors, signaling molecules and transcription factors. This review summarizes some of the recent findings on a series of chondrodysplasias caused by mutations in FGFR3 and PTHR1, two receptors expressed in the cartilage growth plate and mediating two main signaling pathways. Data from human diseases and relevant animal models provide new clues for understanding how signaling molecules and their interaction with key transcription factors control and regulate the development and growth of long bones.


Asunto(s)
Condrogénesis/fisiología , Osteocondrodisplasias/genética , Osteogénesis/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/fisiología , Receptores de Hormona Paratiroidea/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Condrogénesis/genética , Factor 3 de Crecimiento de Fibroblastos/fisiología , Placa de Crecimiento/patología , Humanos , Mesodermo/citología , Modelos Animales , Modelos Genéticos , Mutación , Osteocondrodisplasias/fisiopatología , Osteogénesis/genética , Hormona Paratiroidea/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor de Hormona Paratiroídea Tipo 1 , Receptores de Hormona Paratiroidea/deficiencia , Receptores de Hormona Paratiroidea/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
17.
Front Biosci ; 2: d519-26, 1997 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-9334290

RESUMEN

Mouse mammary tumorigenesis as a result of mouse mammary tumor virus (MMTV) integrations has helped to identify a wide variety of interesting genes that play a role in mammary development and tumorigenesis. Several such genes int1/wnt1, wnt3, wnt 10B, int2/fgf3, fgf4, int3/notch and int6 have been shown to be genetically altered in naturally formed mammary tumors as a consequence of MMTV integration. Some of these genes have been well characterised and examined in in vivo breast cancer transgenic models for their potential for tumorigenesis. Overexpression of one or more of these genes have resulted in a striking proliferation of mammary gland epithelium of both female and male transgenic mice. Our own studies have demonstrated overexpression of int5/aromatase in mammary glands of virgin and postlactational females leads to the induction of various preneoplastic and neoplastic changes that are similar to early breast cancer, that may, in turn, increase the risks for developing breast cancer. Therefore, further understanding of these genes should provide new insights to their involvement and mechanism of action in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Mamarias Animales/genética , Proteínas Wnt/fisiología , Animales , Animales Salvajes , Neoplasias de la Mama/fisiopatología , Carcinógenos , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Factor 3 de Iniciación Eucariótica/fisiología , Femenino , Factor 3 de Crecimiento de Fibroblastos/fisiología , Regulación de la Expresión Génica , Humanos , Masculino , Neoplasias Mamarias Animales/virología , Virus del Tumor Mamario del Ratón/patogenicidad , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...