Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Cardiovasc Pathol ; 68: 107581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37838075

RESUMEN

BACKGROUND: We previously showed that growth differentiation factor 5 (GDF5) limits infarct expansion post-myocardial infarction (MI). We now examine the acute post-MI role of GDF5 in cardiac rupture. METHODS AND RESULTS: Following permanent ligation of the left anterior descending artery, GDF5 deficiency (i.e., GDF5 knockout mice) reduced the incidence of cardiac rupture (4/24 vs. 17/24; P < .05), and improved survival over 28-d compared to wild-type (WT) mice (79% vs. 25%; P < .0001). Moreover, at 3-d post-MI, GDF5-deficient mice manifest: (a) reduced heart weight/body weight ratio (P < .0001) without differences in infarct size or cardiomyocyte size; (b) increased infarct zone expression of Col1a1 (P < .05) and Col3a1 (P < .01), suggesting increased myocardial fibrosis; and (c) reduced aortic and left ventricular peak systolic pressures (P ≤ .05), suggesting reduced afterload. Despite dysregulated inflammatory markers and reduced circulating monocytes in GDF5-deficient mice at 3-d post-MI, reciprocal bone marrow transplantation (BMT) failed to implicate GDF5 in BM-derived cells, suggesting the involvement of tissue-resident GDF5 expression in cardiac rupture. CONCLUSIONS: Loss of GDF5 reduces cardiac rupture post-MI with increased myocardial fibrosis and lower afterload, albeit at the cost of chronic adverse remodeling.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento , Rotura Cardíaca , Infarto del Miocardio , Animales , Ratones , Modelos Animales de Enfermedad , Fibrosis , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Rotura Cardíaca/genética , Rotura Cardíaca/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/patología
2.
Sci Rep ; 13(1): 22778, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123662

RESUMEN

Growth differentiation factor 5 (GDF5), a BMP family member, is highly expressed in the surface layer of articular cartilage. The GDF5 gene is a key risk locus for osteoarthritis and Gdf5-deficient mice show abnormal joint development, indicating that GDF5 is essential in joint development and homeostasis. In this study, we aimed to identify transcription factors involved in Gdf5 expression by performing two-step screening. We first performed microarray analyses to find transcription factors specifically and highly expressed in the superficial zone (SFZ) cells of articular cartilage, and isolated 11 transcription factors highly expressed in SFZ cells but not in costal chondrocytes. To further proceed with the identification, we generated Gdf5-HiBiT knock-in (Gdf5-HiBiT KI) mice, by which we can easily and reproducibly monitor Gdf5 expression, using CRISPR/Cas9 genome editing. Among the 11 transcription factors, Hoxa10 clearly upregulated HiBiT activity in the SFZ cells isolated from Gdf5-HiBiT KI mice. Hoxa10 overexpression increased Gdf5 expression while Hoxa10 knockdown decreased it in the SFZ cells. Moreover, ChIP and promoter assays proved the direct regulation of Gdf5 expression by HOXA10. Thus, our results indicate the important role played by HOXA10 in Gdf5 regulation and the usefulness of Gdf5-HiBiT KI mice for monitoring Gdf5 expression.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Factores de Transcripción/metabolismo
3.
Med Sci (Paris) ; 39 Hors série n° 1: 47-53, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975770

RESUMEN

Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.


Title: GDF5 - Un candidat thérapeutique dans la lutte contre la sarcopénie. Abstract: La sarcopénie est une maladie musculaire complexe liée à l'âge qui affecte entre 10 à 16 % des personnes âgées de plus 65 ans. Elle se caractérise par une perte excessive de la masse musculaire et de la force. Malgré la multitude d'études visant à comprendre les mécanismes physiologiques qui sous-tendent cette pathologie, la physiopathologie de la sarcopénie reste encore mal comprise. A ce jour, il n'existe pas de traitement pharmacologique pour lutter contre cette pathologie. Dans ce contexte, notre équipe développe des approches thérapeutiques basées sur l'utilisation de la protéine GDF5 pour contrecarrer la perte de la masse et de la fonction musculaire dans diverses conditions pathologiques dont la sarcopénie. Après avoir décrypté un des mécanismes moléculaires régulant l'expression du GDF5, nous avons démontré le potentiel thérapeutique de cette protéine dans la préservation de la masse et la force musculaire chez les souris âgées.


Asunto(s)
Sarcopenia , Anciano , Animales , Humanos , Ratones , Factor 5 de Diferenciación de Crecimiento/metabolismo , Músculo Esquelético/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/genética
4.
Genes (Basel) ; 14(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895244

RESUMEN

The GDF5 gene is involved in the development of skeletal elements, synovial joint formation, tendons, ligaments, and cartilage. Several polymorphisms are present within the gene, and two of them, rs143384 and 143383, were reported to be correlated with osteoarticular disease or muscle flexibility. The aim of this research is to verify if the worldwide distribution of the rs143384 polymorphism among human populations was shaped by selective pressure, or if it was the result of random genetic drift events. Ninety-four individuals of both the male and female sexes, 18-28 years old, from Sardinia were analyzed. We observed the following genotype frequencies: 28.72% of AA homozygotes, 13.83% of GG homozygotes, and 57.45% of AG heterozygotes. The allele frequencies were 0.574 for allele A and 0.426 for allele G. The relationships between the populations were verified via Multidimensional Scaling (MDS). Our data show (i) a clear heterogeneity within the African populations; (ii) a strong differentiation between the African populations and the other populations; and that (iii) the Sardinian population is placed within the European cluster. To reveal possible traces of selective pressure, the Population Branch Statistic (PBS) was calculated; both the rs143384 and 143383 SNPs have low PBS values, suggesting that there are no signals of selective pressure in those areas of the gene.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Genotipo , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple/genética , Alelos , Homocigoto , Factor 5 de Diferenciación de Crecimiento/genética
5.
J Orthop Surg Res ; 18(1): 763, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817264

RESUMEN

BACKGROUND: Osteoarthritis (OA) is caused by a complex set of pathophysiological factors. The genetic factors involved in the occurrence and progress of the disease have been widely discussed by scholars. It was found that growth differentiation factor 5 (GDF5) gene polymorphisms may be linked to OA susceptibility, which has been controversial and needs to be further confirmed by an updated meta-analysis. OBJECTIVES: We examined the association between GDF5 rs143383 single nucleotide polymorphism (SNP) and OA susceptibility. METHODS: All relevant articles that met the criteria are retrieved and included, and the search deadline is June 2022. The allele frequencies and different genotype frequencies of GDF5 rs143383 loci in each study were extracted and statistically analyzed by R4.1.3 software, and the different genetic models were analyzed based on their odds ratio (OR) and 95% confidence interval (CI). RESULTS: The meta-analysis explained that GDF5 rs143383 SNP was crucial correlated with OA in all patients with OA of knee, hip and hand. The codominant gene model in the whole crowd (OR = 1.17, 95% CI 1.07-1.27, P < 0.01) enlightened that OA was vitally associated with GDF5 gene polymorphism. At the same time, we did a subgroup analysis based on ethnicity. The codominant gene model (OR = 1.31, 95% CI 1.12-1.53, P < 0.01) in Asian population, the codominant homozygote model (OR = 1.28, 95% CI 1.14-1.43), codominant heterozygote gene model (OR = 1.12, 95% CI 1.01-1.23, P = 0.02), and dominant gene model (OR = 1.19, 95% CI 1.09-1.31, P < 0.01) in Caucasian are analyzed by subgroup analysis. It means that there is a momentous relationship between the GDF5rs143383 gene polymorphism and OA, especially among Caucasians. In addition, we also discussed different types of OA separately and discover that the GDF5rs143383 gene polymorphism was relevant for knee osteoarthritis (KOA) and hand osteoarthritis, and it was more significant in the Caucasian population. But due to the high heterogeneity in hip osteoarthritis, it could not be accurately concluded. Furthermore, we also analyzed the osteoarthritis of different genders and found that the GDF5 rs143383 SNP was associated with both men and women and was still significant in the Caucasian population. CONCLUSION: We found a close association between osteoarthritis and GDF5rs143383SNP in this study. From the analysis of each group, we got the same conclusion in KOA and hand OA, but which need further verification in hip OA. Considering gender, we found a close relationship between GDF5 rs143383 SNP and OA of the knee, hip and hand, both for men and women. This conclusion is more obvious in Caucasian people.


Asunto(s)
Osteoartritis de la Cadera , Osteoartritis de la Rodilla , Femenino , Humanos , Masculino , Estudios de Casos y Controles , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Osteoartritis de la Rodilla/genética , Polimorfismo de Nucleótido Simple/genética
6.
Mol Biol Rep ; 50(8): 6337-6347, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37310547

RESUMEN

BACKGROUND: Degenerative disc disease(DDD)is one of the most important causes of low back pain (LBP). Programmed death of human nucleus pulposus mesenchymal stem cells (NPMSCs) plays an important role in the progression of DDD. Growth differentiation factor-5 (GDF-5) is a protein that promotes chondrogenic differentiation, and has been reported to slow the expression of inflammatory factors in nucleus pulposus cells. Compared with those in normal rats, MRI T2-weighted images show hypointense in the central nucleus pulposus region of the intervertebral disc in GDF-5 knockout rats. METHODS AND RESULTS: We aimed to evaluate the role of GDF-5 and Ras homolog family member A (RhoA) in NPMSCs. We used lipopolysaccharide (LPS) to simulate the inflammatory environment in degenerative disc disease, and performed related experiments on the effects of GDF-5 on NPMSCs, including the effects of pyroptosis, RhoA protein, and the expression of extracellular matrix components, and the effects of GDF-5, on NPMSCs. In addition, the effect of GDF-5 on chondroid differentiation of NPMSCs was included. The results showed that the addition of GDF-5 inhibited the LPS-induced pyroptosis of NPMSCs, and further analysis of its mechanism showed that this was achieved by activating the RhoA signaling pathway. CONCLUSION: These findings suggest that GDF-5 plays an important role in inhibiting the pyroptosis of NPMSCs and GDF-5 may have potential for degenerative disc disease gene-targeted therapy in the future.


Asunto(s)
Degeneración del Disco Intervertebral , Células Madre Mesenquimatosas , Núcleo Pulposo , Animales , Humanos , Ratas , Factor 5 de Diferenciación de Crecimiento/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/terapia , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Núcleo Pulposo/metabolismo , Piroptosis , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal
7.
J Mater Sci Mater Med ; 34(7): 31, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378714

RESUMEN

Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (ß-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.


Asunto(s)
Durapatita , Osteogénesis , Femenino , Animales , Ovinos , Durapatita/química , Regeneración Ósea , Factor 5 de Diferenciación de Crecimiento , Microtomografía por Rayos X , Fosfatos de Calcio/química , Hidroxiapatitas
8.
Spine (Phila Pa 1976) ; 48(15): E257-E265, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075330

RESUMEN

STUDY DESIGN: Preclinical study. OBJECTIVE: Develop and test a drug delivery system (DDS) composed of anti-inflammatories and growth factors in the rabbit disk injury model. SUMMARY OF BACKGROUND DATA: Biological therapies that inhibit inflammation or enhance cell proliferation can alter intervertebral disk (IVD) homeostasis to favor regeneration. As biological molecules have short half-lives and one molecule may not cover multiple disease pathways, effective treatments may require a combination of growth factors and anti-inflammatory agents delivered in a sustained manner. MATERIALS AND METHODS: Biodegradable microspheres were generated separately to encapsulate tumor necrosis factor alpha (TNFα) inhibitors [etanercept (ETN)] or growth differentiation factor 5 (GDF5) and were embedded into a thermoresponsive hydrogel. Release kinetics and activity of ETN and GDF5 were measured in vitro . For in vivo testing, New Zealand White rabbits (n=12) underwent surgery for disk puncture and treatment with blank-DDS, ETN-DDS, or ETN+GDF5-DDS at levels L34, L45, and L56. Radiographic and magnetic resonance images of the spines were obtained. The IVDs were isolated for histologic and gene expression analyses. RESULTS: ETN and GDF5 were encapsulated into poly (L-lactide-co-glycolide) microspheres and had average initial bursts of 2.4±0.1 and 11.2±0.7 µg from DDS, respectively. In vitro studies confirmed that ETN-DDS inhibited TNFα-induced cytokine release and GDF5-DDS induced protein phosphorylation. In vivo studies showed that rabbit IVDs treated with ETN+GDF5-DDS had better histologic outcomes, higher levels of extracellular, and lower levels of inflammatory gene expression than IVDs treated with blank-DDS or ETN-DDS. CONCLUSIONS: This pilot study demonstrated that DDS can be fabricated to deliver sustained and therapeutic dosages of ETN and GDF5. In addition, ETN+GDF5-DDS may have greater anti-inflammatory and regenerative effects than ETN-DDS alone. Thus, intradiscal injection of controlled release TNF-α inhibitors and growth factors may be a promising treatment to reduce disk inflammation and back pain.


Asunto(s)
Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Conejos , Animales , Microesferas , Hidrogeles , Factor 5 de Diferenciación de Crecimiento/farmacología , Proyectos Piloto , Sistemas de Liberación de Medicamentos , Inflamación/tratamiento farmacológico , Antiinflamatorios
9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901991

RESUMEN

Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.


Asunto(s)
Exosomas , MicroARNs , Ratones , Animales , PPAR gamma/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , MicroARNs/genética , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Exosomas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo
10.
J Orthop Surg Res ; 18(1): 137, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36823651

RESUMEN

BACKGROUND: The present study aimed to explore the potentials of lncRNA LINC00313 in osteoarthritis (OA). METHODS: qRT-PCR was performed to detect the expression of LINC00313 in OA tissues and cells. CCK-8 and EDU were used to detect cell proliferation. The ELISA test kit was conducted to detect the expression of inflammatory factors. Flow cytometry was used to detect the apoptosis rates. Western blot was applied to measure the protein expression. The luciferase reporter gene test was carried out to verify the relationship between miR-525-5p and LINC00313 or GDF5. RESULTS: The data showed that the expression of LINC00313 was significantly down-regulated in OA tissues and cells. Functionally, LINC00313 promoted the proliferation of chondrocytes and suppressed the secretion of inflammatory factors and cell apoptosis. Moreover, LINC00313 functioned as a ceRNA to up-regulate the expression of GDF5 via sponging miR-525-5p. Luciferase and RNA pull-down assays further verified the interaction between miR-525-5p and LINC00313 (or GDF5). Moreover, overexpression of miR-525-5p or down-regulated GDF5 degraded the cellular functions of chondrocyte. Rescue experiments showed that the overexpression of miR-525-5p reversed the increase in cell viability and the decrease in pro-inflammatory factors and apoptosis rate mediated by LINC00313. The knockdown of GDF5 reversed the promotion of miR-525-5p knockdown on cell viability and the inhibition of pro-inflammatory factors and apoptosis rate. CONCLUSIONS: LINC00313 inhibited the development of OA through regulating miR-525-5p/GDF5 axis. LncRNA LINC00313 can be used as a potential target for the treatment of OA.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento , MicroARNs , Osteoartritis , ARN Largo no Codificante , Humanos , Apoptosis , Proliferación Celular/genética , Condrocitos/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Interleucina-1beta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
11.
Hand (N Y) ; 18(3): 436-445, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34340572

RESUMEN

BACKGROUND: As hand surgeons, tendon injuries and lacerations are a particularly difficult problem to treat, as poor healing potential and adhesions hamper optimal recovery. Adipose-derived stem cells (ADSCs) have been shown to aid in rat Achilles tendon healing after a puncture defect, and this model can be used to study tendon healing in the upper extremity. We hypothesized that ADSCs cultured with growth differentiation factor 5 (GDF5) and platelet-derived growth factor (PDGF) would improve tendon healing after a transection injury. METHODS: Rat Achilles tendons were transected and then left either unrepaired or repaired. Both groups were treated with a hydrogel alone, a hydrogel with ADSCs, or a hydrogel with ADSCs that were cultured with GDF5 and PDGF prior to implantation. Tissue harvested from the tendons was evaluated for gene expression of several genes known to play an important role in successful tendon healing. Histological examination of the tendon healing was also performed. RESULTS: In both repaired and unrepaired tendons, those treated with ADSCs cultured with GDF5/PDGF prior to implantation showed the best tendon fiber organization, the smallest gaps, and the most organized blood vessels. Treatment with GDF5/PDGF increased expression of the protenogenesis gene SOX9, promoted cell-to-cell connections, improved cellular proliferation, and enhanced tissue remodeling. CONCLUSIONS: Adipose-derived stem cells cultured with GDF5/PDGF prior to implantation can promote tendon repair by improving cellular proliferation, tenogenesis, and vascular infiltration. This effect results in a greater degree of organized tendon healing.


Asunto(s)
Tendón Calcáneo , Factor de Crecimiento Derivado de Plaquetas , Ratas , Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Hidrogeles/metabolismo , Células Madre
12.
Cells ; 13(1)2023 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201241

RESUMEN

Chondrogenic induction of bone-marrow-derived stromal cells (BMSCs) is typically accomplished with medium supplemented with growth factors (GF) from the transforming growth factor-beta (TGF-ß)/bone morphogenetic factor (BMP) superfamily. In a previous study, we demonstrated that brief (1-3 days) stimulation with TGF-ß1 was sufficient to drive chondrogenesis and hypertrophy using small-diameter microtissues generated from 5000 BMSC each. This biology is obfuscated in typical large-diameter pellet cultures, which suffer radial heterogeneity. Here, we investigated if brief stimulation (2 days) of BMSC microtissues with BMP-2 (100 ng/mL) or growth/differentiation factor (GDF-5, 100 ng/mL) was also sufficient to induce chondrogenic differentiation, in a manner comparable to TGF-ß1 (10 ng/mL). Like TGF-ß1, BMP-2 and GDF-5 are reported to stimulate chondrogenic differentiation of BMSCs, but the effects of transient or brief use in culture have not been explored. Hypertrophy is an unwanted outcome in BMSC chondrogenic differentiation that renders engineered tissues unsuitable for use in clinical cartilage repair. Using three BMSC donors, we observed that all GFs facilitated chondrogenesis, although the efficiency and the necessary duration of stimulation differed. Microtissues treated with 2 days or 14 days of TGF-ß1 were both superior at producing extracellular matrix and expression of chondrogenic gene markers compared to BMP-2 and GDF-5 with the same exposure times. Hypertrophic markers increased proportionally with chondrogenic differentiation, suggesting that these processes are intertwined for all three GFs. The rapid action, or "temporal potency", of these GFs to induce BMSC chondrogenesis was found to be as follows: TGF-ß1 > BMP-2 > GDF-5. Whether briefly or continuously supplied in culture, TGF-ß1 was the most potent GF for inducing chondrogenesis in BMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Factor 5 de Diferenciación de Crecimiento/farmacología , Médula Ósea , Condrogénesis , Factor de Crecimiento Transformador beta , Hipertrofia
13.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232777

RESUMEN

The intrinsic healing following tendon injury is ideal, in which tendon progenitor cells proliferate and migrate to the injury site to directly bridge or regenerate tendon tissue. However, the mechanism determining why and how those cells are attracted to the injury site for tendon healing is not understood. Since the tenocytes near the injury site go through apoptosis or necrosis following injury, we hypothesized that secretions from injured tenocytes might have biological effects on cell proliferation and migration to enhance tendon healing. Tenocyte apoptosis was induced by 24 h cell starvation. Apoptotic body-rich media (T-ABRM) and apoptotic body-depleted media (T-ABDM) were collected from culture media after centrifuging. Tenocytes and bone marrow-derived stem cells (BMDSCs) were isolated and cultured with the following four media: (1) T-ABRM, (2) T-ABDM, (3) GDF-5, or (4) basal medium with 2% fetal calf serum (FCS). The cell activities and functions were evaluated. Both T-ABRM and T-ABDM treatments significantly stimulated the cell proliferation, migration, and extracellular matrix synthesis for both tenocytes and BMDSCs compared to the control groups (GDF-5 and basal medium). However, cell proliferation, migration, and extracellular matrix production of T-ABRM-treated cells were significantly higher than the T-ABDM, which indicates the apoptotic bodies are critical for cell activities. Our study revealed the possible mechanism of the intrinsic healing of the tendon in which apoptotic bodies, in the process of apoptosis, following tendon injury promote tenocyte and stromal cell proliferation, migration, and production. Future studies should analyze the components of the apoptotic bodies that play this role, and, thus, the targeting of therapeutics can be developed.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tendones , Proliferación Celular , Células Cultivadas , Medios de Cultivo/farmacología , Factor 5 de Diferenciación de Crecimiento/farmacología , Humanos , Células Madre Mesenquimatosas/fisiología , Albúmina Sérica Bovina/farmacología , Traumatismos de los Tendones/terapia , Tenocitos
14.
Artículo en Inglés | MEDLINE | ID: mdl-35675541

RESUMEN

OBJECTIVE: To explore the role of WNT family member 1 (WNT1) in the development of dysplasia of the hip (DDH) and the molecular mechanism involved in this process. Methods: Si-WNT1, pcDNA3.1-WNT1 or corresponding negative controls were transfected into human osteoblast hFOB1.19 and human chondrocyte C28/I2, respectively. The proliferation of cells was measured by EdU assay. The relative expressions of human noggin gene (NOG), growth differentiating factor 5 (GDF5), WNT1, and WNT1-inducible-signaling pathway protein 2 (WISP2) were determined by immunofluorescence analysis. The protein expressions of RNA-binding protein of multiple splice forms 2 (RBPMS2), NOG, bone morphogenetic protein 2 (BMP2), BMP4, WNT1 and WISP2 were determined by western blot. Animal experiment was also performed and the morphological development of hip joint was observed. Results: Overexpression of WNT1 promoted osteoblast proliferation and inhibited chondrocyte proliferation, while knockdown of WNT1 inhibited osteoblast proliferation. In chondrocytes, knockdown of WNT1 upregulated NOG expression, while overexpression of WNT1 downregulated its expression. In osteoblasts and chondrocytes, overexpression of WNT1 increased BMP2, BMP4, WNT1, and WISP2 expression. RBPMS2 and NOG were slightly expressed in each group. Conclusion: Overexpression of WNT1 promoted osteoblast proliferation, inhibited chondrocyte proliferation, and increased the expressions of BMP2, BMP4, WNT1, and WISP2. Therefore, WNT1 may be a new therapeutic target for DDH.


Asunto(s)
Luxación Congénita de la Cadera , Osteoblastos , Proteína Wnt1 , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Diferenciación Celular , Proliferación Celular , Factor V/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Luxación Congénita de la Cadera/metabolismo , Humanos , Osteoblastos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteína Wnt1/metabolismo
15.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563063

RESUMEN

Owing to the rapid aging of society, the numbers of patients with joint disease continue to increase. Accordingly, a large number of patients require appropriate treatment for osteoarthritis (OA), the most frequent bone and joint disease. Thought to be caused by the degeneration and destruction of articular cartilage following persistent and excessive mechanical stimulation of the joints, OA can significantly impair patient quality of life with symptoms such as knee pain, lower limb muscle weakness, or difficulty walking. Because articular cartilage has a low self-repair ability and an extremely low proliferative capacity, healing of damaged articular cartilage has not been achieved to date. The current pharmaceutical treatment of OA is limited to the slight alleviation of symptoms (e.g., local injection of hyaluronic acid or non-steroidal anti-inflammatory drugs); hence, the development of effective drugs and regenerative therapies for OA is highly desirable. This review article summarizes findings indicating that proteoglycan 4 (Prg4)/lubricin, which is specifically expressed in the superficial zone of articular cartilage and synovium, functions in a protective manner against OA, and covers the transcriptional regulation of Prg4 in articular chondrocytes. We also focused on growth differentiation factor 5 (Gdf5), which is specifically expressed on the surface layer of articular cartilage, particularly in the developmental stage, describing its regulatory mechanisms and functions in joint formation and OA pathogenesis. Because several genetic studies in humans and mice indicate the involvement of these genes in the maintenance of articular cartilage homeostasis and the presentation of OA, molecular targeting of Prg4 and Gdf5 is expected to provide new insights into the aetiology, pathogenesis, and potential treatment of OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Factor 5 de Diferenciación de Crecimiento/farmacología , Humanos , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Proteoglicanos/metabolismo , Calidad de Vida
16.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451016

RESUMEN

It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Pluripotentes , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Hipertrofia , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
17.
Stem Cell Res Ther ; 13(1): 130, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346361

RESUMEN

BACKGROUND: The treatment of bone loss has posed a challenge to clinicians for decades. Thus, it is of great significance to identify more effective methods for bone regeneration. However, the role and mechanisms of long non-coding RNA small nucleolar RNA host gene 5 (SNHG5) during osteogenic differentiation remain unclear. METHODS: We investigated the function of SNHG5, Yin Yang 1 (YY1), miR-212-3p and growth differentiation factor 5 (GDF5) in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro and in vivo. Molecular mechanisms were clarified by chromatin immunoprecipitation assay and dual luciferase reporter assay. RESULTS: We found SNHG5 expression was upregulated during osteogenesis of hBMSCs. Knockdown of SNHG5 in hBMSCs inhibited osteogenic differentiation while overexpression of SNHG5 promoted osteogenesis. Moreover, YY1 transcription factor directly bound to the promoter region of SNHG5 and regulated SNHG5 expression to promote osteogenesis. Dual luciferase reporter assay confirmed that SNHG5 acted as a miR-212-3p sponge and miR-212-3p directly targeted GDF5 and further activated Smad1/5/8 phosphorylation. miR-212-3p inhibited osteogenic differentiation, while GDF5 promoted osteogenic differentiation of hBMSCs. In addition, calvarial defect experiments showed knockdown of SNHG5 and GDF5 inhibited new bone formation in vivo. CONCLUSION: Our results demonstrated that the novel pathway YY1/SNHG5/miR-212-3p/GDF5/Smad regulates osteogenic differentiation of hBMSCs and may serve as a potential target for the treatment of bone loss.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , ARN Largo no Codificante , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , ARN Largo no Codificante/genética
18.
Eur J Med Res ; 27(1): 5, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35022077

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)-a key factor in IDD-and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. METHODS: An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. RESULTS: The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. CONCLUSIONS: GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD.


Asunto(s)
Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/genética , Infecciones por Lentivirus/virología , Lentivirus , Células Madre Mesenquimatosas/citología , Núcleo Pulposo/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Factor 5 de Diferenciación de Crecimiento/biosíntesis , Infecciones por Lentivirus/metabolismo , Infecciones por Lentivirus/patología , Células Madre Mesenquimatosas/virología , Núcleo Pulposo/patología , Núcleo Pulposo/virología , Conejos
19.
Dev Dyn ; 251(9): 1535-1549, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242444

RESUMEN

BACKGROUND: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota. RESULTS: We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected. CONCLUSIONS: Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento , Pez Cebra , Aletas de Animales/metabolismo , Animales , Huesos/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Ratones , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Ortop Traumatol Rehabil ; 23(5): 335-339, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34734566

RESUMEN

BACKGROUND: Developmental dysplasia of the hip (DDH) is a developmental disorder which is reported to be associated with hip instability. When untreated, it can lead to irreversible joint damage. DDH is known to be a multifactorial disease involving genetic, mechanical and environmental factors. The greatest causative potential is attributed to the genetic component. Growth Differentiation Factor 5 (GDF5) is among the most studied genes associated with processes of regeneration and maintenance of joints. The aim of this work was to analyse the association of SNP rs143383 in the GDF5 gene and the occurrence of DDH, along with association with various contributing factors in the Caucasian population. MATERIAL AND METHODS: A total of 118 samples were analysed for the presence of the mutation. DNA was isolated from all individuals from peripheral blood. SNP rs143383 in the GDF5 gene was genotyped using the TaqMan assay. A standard chi-square test was used to compare allele and genotype distributions in patients and healthy controls. RESULTS: The association analysis of genotypes of DDH and rs143383 revealed a significant association. Also, the association of GDF5 and selected contributing factors was statistically significant in female gender (p=0.002), family history (p<0.001), count of pregnancy (p=0.009), laterality of hip involvement and initial US examination. CONCLUSIONS: 1. The results indicate an important effect of rs143383 polymorphism in the GDF5 gene on DDH development. 2. However, our results also suggest that rs143383 is not the only contributing factor in the genetic component of DDH.


Asunto(s)
Displasia del Desarrollo de la Cadera , Luxación Congénita de la Cadera , Alelos , Femenino , Predisposición Genética a la Enfermedad , Factor 5 de Diferenciación de Crecimiento/genética , Luxación Congénita de la Cadera/epidemiología , Luxación Congénita de la Cadera/genética , Humanos , Lactante , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...