Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38663038

RESUMEN

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Asunto(s)
Escherichia coli , Levivirus , ARN Bicatenario , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Bicatenario/metabolismo , Humanos , Levivirus/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Inmunidad Innata , Interferón beta/metabolismo , Interferón beta/genética , FN-kappa B/metabolismo , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Transducción de Señal , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Receptores Inmunológicos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética
2.
Cell Mol Biol Lett ; 29(1): 61, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671352

RESUMEN

BACKGROUND: Macrophage proinflammatory activation contributes to the pathology of severe acute pancreatitis (SAP) and, simultaneously, macrophage functional changes, and increased pyroptosis/necrosis can further exacerbate the cellular immune suppression during the process of SAP, where cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role. However, the function and mechanism of cGAS-STING in SAP-induced lung injury (LI) remains unknown. METHODS: Lipopolysaccharide (LPS) was combined with caerulein-induced SAP in wild type, cGAS -/- and sting -/- mice. Primary macrophages were extracted via bronchoalveolar lavage and peritoneal lavage. Ana-1 cells were pretreated with LPS and stimulated with nigericin sodium salt to induce pyroptosis in vitro. RESULTS: SAP triggered NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis of alveolar and peritoneal macrophages in mouse model. Knockout of cGAS/STING could ameliorate NLRP3 activation and macrophage pyroptosis. In addition, mitochondrial (mt)DNA released from damaged mitochondria further induced macrophage STING activation in a cGAS- and dose-dependent manner. Upregulated STING signal can promote NLRP3 inflammasome-mediated macrophage pyroptosis and increase serum interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels and, thus, exacerbate SAP-associated LI (SAP-ALI). Downstream molecules of STING, IRF7, and IRF3 connect the mtDNA-cGAS-STING axis and the NLRP3-pyroptosis axis. CONCLUSIONS: Negative regulation of any molecule in the mtDNA-cGAS-STING-IRF7/IRF3 pathway can affect the activation of NLRP3 inflammasomes, thereby reducing macrophage pyroptosis and improving SAP-ALI in mouse model.


Asunto(s)
ADN Mitocondrial , Factor 3 Regulador del Interferón , Lesión Pulmonar , Macrófagos , Proteínas de la Membrana , Nucleotidiltransferasas , Pancreatitis , Piroptosis , Transducción de Señal , Animales , Piroptosis/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Pancreatitis/metabolismo , Pancreatitis/genética , Pancreatitis/patología , Pancreatitis/inducido químicamente , Macrófagos/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Lipopolisacáridos , Masculino , Modelos Animales de Enfermedad
3.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636698

RESUMEN

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Asunto(s)
Autofagia , Factor 7 Regulador del Interferón , Factores Reguladores del Interferón , Lisosomas , Rhabdoviridae , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Autofagia/inmunología , Lisosomas/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Rhabdoviridae/fisiología , Rhabdoviridae/inmunología , Interferones/metabolismo , Poli I-C/inmunología , Infecciones por Rhabdoviridae/inmunología , Proteolisis , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , Inmunidad Innata
4.
J Innate Immun ; 16(1): 226-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527452

RESUMEN

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Asunto(s)
Adenoviridae , Citocinas , Factor 3 Regulador del Interferón , Lipopolisacáridos , Macrófagos , Ratones Noqueados , Animales , Ratones , Lipopolisacáridos/inmunología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Macrófagos/inmunología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Vectores Genéticos , Infecciones por Adenoviridae/inmunología , Interferón Tipo I/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Interferón beta/metabolismo
5.
Environ Int ; 184: 108480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341879

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Asunto(s)
Dicloruros de Etileno , Melatonina , Testículo , Masculino , Ratones , Animales , Piroptosis , Melatonina/farmacología , Melatonina/metabolismo , ARN de Interacción con Piwi , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/farmacología
6.
Eur J Pharmacol ; 968: 176382, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311277

RESUMEN

Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1ß, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.


Asunto(s)
Dermatitis , Psoriasis , Humanos , Animales , Ratones , Imiquimod/efectos adversos , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/farmacología , Lipopolisacáridos/metabolismo , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Piel , Dermatitis/patología , Inflamación/patología , Células Dendríticas , Transducción de Señal , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
7.
J Affect Disord ; 349: 297-309, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211750

RESUMEN

BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.


Asunto(s)
Factor 7 Regulador del Interferón , Fármacos Neuroprotectores , Anciano , Animales , Humanos , Ratones , Encéfalo/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Ratones Endogámicos C57BL , Trastornos Neurocognitivos , Fototerapia
8.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043800

RESUMEN

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Asunto(s)
Inmunidad Innata , Factor 7 Regulador del Interferón , Interferón Tipo I , Proteínas Serina-Treonina Quinasas , Infecciones por Virus ARN , Virus ARN , Receptores de Hidrocarburo de Aril , Animales , Ratones , Fibroblastos , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Virus ARN/inmunología , Infecciones por Virus ARN/inmunología , Humanos , Células HEK293
9.
Inflammation ; 47(1): 404-420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37930487

RESUMEN

In the realm of Parkinson's disease (PD) research, NLRP3 inflammasome-mediated pyroptosis has recently garnered significant attention as a potential novel form of dopaminergic neuronal death. Our previous research revealed the activation of innate immune-related genes, such as the TLR4 signaling pathway and interferon regulatory factor 7 (IRF7), although the specific mechanism remains unclear. Our current study shed light on whether the TLR4 signaling pathway and IRF7 can affect the pyroptosis of dopaminergic nerve cells and thus participate in the pathogenesis of PD. The PD model was constructed by MPP+ treatment of PC12 cells or stereotactic injection of the striatum of SD rats, and the expression of genes were detected by RT-qPCR and Western Blotting. Lentivirus, siRNA and (5Z)-7-Oxozeaenol were used to validate the regulation of this pathway on pyroptosis. The expression of TLR4, TAK1, IRF7 and pyroptosis molecular markers was upregulated after MPP+ treatment. IRF7 could affect dopaminergic neural cells pyroptosis by targeted regulation of NLRP3. Furthermore, inhibition of the TLR4/TAK1 signaling pathway led to a decrease in the expression of both IRF7 and NLRP3, while overexpression of IRF7 reversed the reduction in pyroptosis and increase in TH expression. TLR4/TAK1/IRF7 axis can promote PD by influencing pyroptosis through NLRP3.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad de Parkinson , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Enfermedad de Parkinson/metabolismo , Receptor Toll-Like 4/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Ratas Sprague-Dawley , Inflamasomas/metabolismo
10.
Cell Mol Biol Lett ; 28(1): 91, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946128

RESUMEN

OBJECTIVE: To investigate the mechanism of action of Srg3 in acute lung injury caused by sepsis. METHODS: First, a sepsis-induced acute lung injury rat model was established using cecal ligation and puncture (CLP). RNA sequencing (RNA-seq) was used to screen for highly expressed genes in sepsis-induced acute lung injury (ALI), and the results showed that Srg3 was significantly upregulated. Then, SWI3-related gene 3 (Srg3) was knocked down using AAV9 vector in vivo, and changes in ALI symptoms in rats were analyzed. In vitro experiments were conducted by establishing a cell model using lipopolysaccharide (LPS)-induced BEAS-2B cells and coculturing them with phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells to analyze macrophage polarization. Next, downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression were analyzed using the KEGG database. Finally, gain-of-loss functional validation experiments were performed to analyze the role of downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression in sepsis-induced acute lung injury. RESULTS: Srg3 was significantly upregulated in sepsis-induced acute lung injury, and knocking down Srg3 significantly improved the symptoms of ALI in rats. Furthermore, in vitro experiments showed that knocking down Srg3 significantly weakened the inhibitory effect of LPS on the viability of BEAS-2B cells and promoted alternative activation phenotype (M2) macrophage polarization. Subsequent experiments showed that Srg3 can regulate the activation of the NF-κB signaling pathway and promote ferroptosis. Specific activation of the NF-κB signaling pathway or ferroptosis significantly weakened the effect of Srg3 knockdown. It was then found that Srg3 can be transcriptionally activated by interferon regulatory factor 7 (Irf7), and specific inhibition of Irf7 significantly improved the symptoms of ALI. CONCLUSIONS: Irf7 transcriptionally activates the expression of Srg3, which can promote ferroptosis and activate classical activation phenotype (M1) macrophage polarization by regulating the NF-κB signaling pathway, thereby exacerbating the symptoms of septic lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Sepsis , Animales , Ratas , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Sepsis/complicaciones , Factores de Transcripción/metabolismo
11.
J Virol ; 97(10): e0095923, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772825

RESUMEN

IMPORTANCE: Viral encephalomyelitis outcome is dependent on host responses to neuronal infection. Interferon (IFN) is an important component of the innate response, and IFN regulatory factor (IRF) 7 is an inducible transcription factor for the synthesis of IFN-α. IRF7-deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7 -/- mice produce low levels of IFN-α but high levels of IFN-ß with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7 -/- mice developed inflammation earlier but failed to clear virus from motor neuron-rich regions of the brainstem and spinal cord. Levels of IFN-γ and virus-specific antibody were comparable, indicating that IRF7 deficiency does not impair expression of these known viral clearance factors. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance.


Asunto(s)
Infecciones por Alphavirus , Encefalomielitis , Factor 7 Regulador del Interferón , Virus Sindbis , Animales , Ratones , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Tronco Encefálico/virología , Encefalomielitis/inmunología , Encefalomielitis/virología , Inflamación/virología , Factor 7 Regulador del Interferón/deficiencia , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/inmunología , Interferón beta/metabolismo , Neuronas Motoras/virología , Virus Sindbis/inmunología , Médula Espinal/virología
12.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446070

RESUMEN

Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Ratones , Virus de la Rabia/metabolismo , Rabia/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Replicación Viral
13.
J Biol Chem ; 299(7): 104925, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328105

RESUMEN

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Asunto(s)
Infecciones por VIH , Interferón Tipo I , Proteína 1 que Contiene Dominios SAM y HD , Humanos , Células HEK293 , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Infecciones por VIH/metabolismo , Transducción de Señal
14.
Front Immunol ; 14: 1190841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251373

RESUMEN

Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factors (IRFs) family, is located downstream of the pattern recognition receptors (PRRs)-mediated signaling pathway and is essential for the production of type I interferon (IFN-I). Activation of IRF7 inhibits various viral and bacterial infections and suppresses the growth and metastasis of some cancers, but it may also affect the tumor microenvironment and promote the development of other cancers. Here, we summarize recent advances in the role of IRF7 as a multifunctional transcription factor in inflammation, cancer and infection by regulating IFN-I production or IFN-I-independent signaling pathways.


Asunto(s)
Factor 7 Regulador del Interferón , Interferón Tipo I , Neoplasias , Humanos , Inflamación , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Microambiente Tumoral
15.
Microbiol Spectr ; 11(3): e0413822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37125923

RESUMEN

Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Interferón Tipo I , Niño , Humanos , Enterovirus Humano D/fisiología , Factor 7 Regulador del Interferón/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Antivirales/farmacología , Antígenos Virales/metabolismo
16.
CNS Neurosci Ther ; 29(11): 3378-3390, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37208955

RESUMEN

AIMS: Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS: Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS: DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS: We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dióxido de Carbono , Factor 7 Regulador del Interferón , Animales , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/uso terapéutico , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/uso terapéutico , Sinaptofisina/metabolismo , Sinaptofisina/uso terapéutico
17.
Cytokine ; 165: 156168, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963293

RESUMEN

Osteoarthritis (OA) is the most common joint disease which can lead to serious disability. Interferon regulatory factor 7 (IRF7) is a member of the interferon regulatory factor family. This study aimed to explore the function and potential mechanism of IRF7 in OA. Our results found that IRF7 was increased in LPS-stimulated C28/I2 chondrocytes and in OA mice established with medial menisco-tibial ligament (MMTL) transection. IRF7 silencing enhanced cell viability, reduced IL-18 and IL-1ß levels and suppressed cell apoptosis. IRF7 knockdown decreased ROS and LDH levels, and inhibited pyroptosis in LPS-treated chondrocytes. IRF7 negatively regulated FGF21 expression. FGF21 overexpression alleviated pyroptosis in LPS-stimulated chondrocytes. Knockdown of IRF7 improved OA injury in mice. In conclusion, our study demonstrates that silencing of IRF7 alleviates OA by inhibiting chondrocyte pyroptosis via upregulation of FGF21.


Asunto(s)
MicroARNs , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Piroptosis , Factor 7 Regulador del Interferón/metabolismo , Lipopolisacáridos/metabolismo , Osteoartritis/metabolismo , Apoptosis , MicroARNs/metabolismo , Interleucina-1beta/metabolismo
18.
Sci Rep ; 13(1): 2304, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759676

RESUMEN

Innate immune response in neonatal brain is associated with a robust microglial activation and induction of Toll-like Receptors (TLRs). To date, the role of the scavenger receptor CD36 in TLRs modulation, particularly TLR2 signaling, has been well established in adult brain. However, the crosstalk between TLR4, TLR2 and CD36 and its immunogenic influence in the neonatal brain remains unclear. In this study, using a CD36 blocking antibody (anti-CD36) at post-natal day 8, we evaluated the response of neonates to systemic endotoxin (lipopolysaccharide; LPS) challenge. We visualized the TLR2 response by bioluminescence imaging using the transgenic mouse model bearing the dual reporter system luciferase/green fluorescent protein under transcriptional control of a murine TLR2 promoter. The anti-CD36 treatment modified the LPS induced inflammatory profile in neonatal brains, causing a significant decrease in inflammatory cytokine levels and the TLR2 and TLR3 mediated signalling.The interferon regulatory factor 3 (IRF3) pathway remained unaffected. Treatment of the LPS-challenged human immature microglia with anti-CD36 induced a marked decrease in TLR2/TLR3 expression levels while TLR4 and IRF3 expression was not affected, suggesting the shared CD36 regulatory mechanisms in human and mouse microglia. Collectively, our results indicate that blocking CD36 alters LPS-induced inflammatory profile of mouse and human microglia, suggesting its role in fine-tuning of neuroinflammation.


Asunto(s)
Microglía , Receptor Toll-Like 2 , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Encéfalo/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Lipopolisacáridos , Ratones Transgénicos , Microglía/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptores Toll-Like/metabolismo
19.
J Virol ; 97(1): e0178522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36511697

RESUMEN

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Asunto(s)
Factor 7 Regulador del Interferón , Interferón Tipo I , Orthoreovirus Aviar , Tenosinovitis , Proteínas del Núcleo Viral , Animales , Línea Celular , Pollos/virología , Interacciones Huésped-Patógeno , Inmunidad Innata , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Orthoreovirus Aviar/fisiología , Tenosinovitis/veterinaria , Tenosinovitis/virología , Proteínas del Núcleo Viral/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Poult Sci ; 102(1): 102291, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402044

RESUMEN

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays a vital role in sensing viral DNA in the cytosol, stimulating type I interferon (IFN) production and triggering the innate immune response against DNA virus infection. However, viruses have evolved effective inhibitors to impede this sensing pathway. Chicken anemia virus (CAV), a nonenveloped ssDNA virus, is a ubiquitous pathogen causing great economic losses to the poultry industry globally. CAV infection is reported to downregulate type I IFN induction. However, whether the cGAS-STING signal axis is used by CAV to regulate type I IFN remains unclear. Our results demonstrate that CAV infection significantly elevates the expression of cGAS and STING at the mRNA level, whereas IFN-ß levels are reduced. Furthermore, IFN-ß activation was completely blocked by the structural protein VP1 of CAV in interferon stimulatory DNA (ISD) or STING-stimulated cells. VP1 was further confirmed as an inhibitor by interacting with interferon regulatory factor 7 (IRF7) by binding its C-terminal 143-492 aa region. IRF7 dimerization induced by TANK binding kinase 1 (TBK1) could be inhibited by VP1 in a dose-dependent manner. Together, our study demonstrates that CAV VP1 is an effective inhibitor that interacts with IRF7 and antagonizes cGAS-STING pathway-mediated IFN-ß activation. These findings reveal a new mechanism of immune evasion by CAV.


Asunto(s)
Virus de la Anemia del Pollo , Interferón Tipo I , Animales , Virus de la Anemia del Pollo/genética , Interferón beta/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Proteínas Virales/genética , Pollos/genética , Inmunidad Innata/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...