Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 38(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29941490

RESUMEN

Cancer cells often heavily depend on the ubiquitin-proteasome system (UPS) for their growth and survival. Irrespective of their strong dependence on the proteasome activity, cancer cells, except for multiple myeloma, are mostly resistant to proteasome inhibitors. A major cause of this resistance is the proteasome bounce-back response mediated by NRF1, a transcription factor that coordinately activates proteasome subunit genes. To identify new targets for efficient suppression of UPS, we explored, using immunoprecipitation and mass spectrometry, the possible existence of nuclear proteins that cooperate with NRF1 and identified O-linked N-acetylglucosamine transferase (OGT) and host cell factor C1 (HCF-1) as two proteins capable of forming a complex with NRF1. O-GlcNAcylation catalyzed by OGT was essential for NRF1 stabilization and consequent upregulation of proteasome subunit genes. Meta-analysis of breast and colorectal cancers revealed positive correlations in the relative protein abundance of OGT and proteasome subunits. OGT inhibition was effective at sensitizing cancer cells to a proteasome inhibitor both in culture cells and a xenograft mouse model. Since active O-GlcNAcylation is a feature of cancer metabolism, our study has clarified a novel linkage between cancer metabolism and UPS function and added a new regulatory axis to the regulation of the proteasome activity.


Asunto(s)
Factor 1 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteasoma/farmacología , Acetilglucosamina/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Femenino , Glicosilación , Células HEK293 , Células HeLa , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Factor 1 Relacionado con NF-E2/química , Factor 1 Relacionado con NF-E2/genética , Neoplasias/genética , Factor Nuclear 1 de Respiración , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Ubiquitina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/metabolismo
2.
Free Radic Biol Med ; 110: 196-205, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28625484

RESUMEN

The Nrf1 (Nuclear factor E2-related factor 1) transcription factor performs a critical role in regulating cellular homeostasis. Using a proteomic approach, we identified Host Cell Factor-1 (HCF1), a co-regulator of transcription, and O-GlcNAc transferase (OGT), the enzyme that mediates protein O-GlcNAcylation, as cellular partners of Nrf1a, an isoform of Nrf1. Nrf1a directly interacts with HCF1 through the HCF1 binding motif (HBM), while interaction with OGT is mediated through HCF1. Overexpression of HCF1 and OGT leads to increased Nrf1a protein stability. Addition of O-GlcNAc decreases ubiquitination and degradation of Nrf1a. Transcriptional activation by Nrf1a is increased by OGT overexpression and treatment with PUGNAc. Together, these data suggest that OGT can act as a regulator of Nrf1a.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Procesamiento Proteico-Postraduccional , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Expresión Génica , Glicosilación , Células HEK293 , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Humanos , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Factor Nuclear 1 de Respiración/química , Factor Nuclear 1 de Respiración/genética , Oximas/farmacología , Fenilcarbamatos/farmacología , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Activación Transcripcional/efectos de los fármacos , Transfección , Ubiquitinación
3.
Hum Mol Genet ; 26(15): 2838-2849, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449119

RESUMEN

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.


Asunto(s)
Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Vitamina B 12/metabolismo , Animales , Secuencia de Bases , Región Branquial/metabolismo , Diferenciación Celular , Niño , Anomalías Craneofaciales/genética , Fibroblastos , Regulación de la Expresión Génica/genética , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Mutación , Cultivo Primario de Células , Transcripción Genética , Vitamina B 12/genética , Pez Cebra/genética
4.
J Am Chem Soc ; 139(9): 3332-3335, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28207246

RESUMEN

O-Linked ß-N-acetylglucosamine transferase (OGT) is an essential human enzyme that glycosylates numerous nuclear and cytoplasmic proteins on serine and threonine. It also cleaves Host cell factor 1 (HCF-1) by a mechanism in which the first step involves glycosylation on glutamate. Replacing glutamate with aspartate in an HCF-1 proteolytic repeat was shown to prevent peptide backbone cleavage, but whether aspartate glycosylation occurred was not examined. We report here that OGT glycosylates aspartate much faster than it glycosylates glutamate in an otherwise identical model peptide substrate; moreover, once formed, the glycosyl aspartate reacts further to form a succinimide intermediate that hydrolyzes to produce the corresponding isoaspartyl peptide. Aspartate-to-isoaspartate isomerization in proteins occurs in cells but was previously thought to be exclusively non-enzymatic. Our findings suggest it may also be enzyme-catalyzed. In addition to OGT, enzymes that may catalyze aspartate to isoaspartate isomerization include PARPs, enzymes known to ribosylate aspartate residues in the process of poly(ADP-ribosyl)ation.


Asunto(s)
Ácido Aspártico/biosíntesis , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Ácido Aspártico/química , Biocatálisis , Glicosilación , Factor C1 de la Célula Huésped/química , Humanos , Conformación Molecular
5.
Nat Chem Biol ; 12(11): 899-901, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27618188

RESUMEN

The essential human enzyme O-linked ß-N-acetylglucosamine transferase (OGT), known for modulating the functions of nuclear and cytoplasmic proteins through serine and threonine glycosylation, was unexpectedly implicated in the proteolytic maturation of the cell cycle regulator host cell factor-1 (HCF-1). Here we show that HCF-1 cleavage occurs via glycosylation of a glutamate side chain followed by on-enzyme formation of an internal pyroglutamate, which undergoes spontaneous backbone hydrolysis.


Asunto(s)
Amidas/química , Amidas/metabolismo , Biocatálisis , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Humanos , Hidrólisis
6.
Mol Cell Proteomics ; 15(11): 3405-3411, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27558639

RESUMEN

Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification. This post-translational modification has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain. We also report that O-GlcNAcase, the enzyme responsible for removal of O-GlcNAcylation does not appear to remove the S-linked sugar. Such Cys modifications have been detected and identified in mouse and rat samples. This work has established the occurrence of 14 modification sites assigned to 11 proteins unambiguously. We have also identified S-GlcNAcylation from human Host Cell Factor 1 isolated from HEK-cells. Although these site assignments are primarily based on electron-transfer dissociation mass spectra, we also report that S-linked GlcNAc is more stable under collisional activation than O-linked GlcNAc derivatives.


Asunto(s)
Acetilglucosamina/química , Cisteína/química , Glicopéptidos/química , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Células HEK293 , Factor C1 de la Célula Huésped/química , Humanos , Espectrometría de Masas , Ratones , Procesamiento Proteico-Postraduccional , Ratas
7.
Annu Rev Biochem ; 85: 631-57, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294441

RESUMEN

O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding ß-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.


Asunto(s)
Células Eucariotas/enzimología , Factor C1 de la Célula Huésped/química , N-Acetilglucosaminiltransferasas/química , Procesamiento Proteico-Postraduccional , Acilación , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , División Celular , Supervivencia Celular , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Células Eucariotas/citología , Glicosilación , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Mamíferos , Ratones , Modelos Moleculares , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Especificidad de la Especie
8.
Hum Mol Genet ; 24(12): 3335-47, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25740848

RESUMEN

Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.


Asunto(s)
Encéfalo/citología , Factor C1 de la Célula Huésped/genética , Mutación , Células-Madre Neurales/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Encéfalo/embriología , Proteínas Portadoras/genética , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Femenino , Expresión Génica , Células HEK293 , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Células-Madre Neurales/citología , Oxidorreductasas , Linaje , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción Genética
9.
Science ; 342(6163): 1235-9, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24311690

RESUMEN

Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.


Asunto(s)
Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glicosilación , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteolisis , Ácido Pirrolidona Carboxílico/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
10.
Am J Hum Genet ; 93(3): 506-14, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24011988

RESUMEN

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Factor C1 de la Célula Huésped/genética , Hiperhomocisteinemia/genética , Mutación/genética , Vitamina B 12/genética , Edad de Inicio , Secuencia de Aminoácidos , Sitios de Unión , Análisis Mutacional de ADN , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Células HEK293 , Factor C1 de la Célula Huésped/química , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo
11.
Proteomics ; 13(6): 982-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23335398

RESUMEN

The development of electron-based, unimolecular dissociation MS, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile PTM site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD MS. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation MS, in a study of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional coregulator that forms a stable complex with O-GlcNAc transferase and controls cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) MS, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include 19 sites of O-GlcNAcylation, two sites of phosphorylation, and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation.


Asunto(s)
Factor C1 de la Célula Huésped/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Glicosilación , Células HEK293 , Factor C1 de la Célula Huésped/aislamiento & purificación , Factor C1 de la Célula Huésped/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
12.
Proc Natl Acad Sci U S A ; 109(43): 17430-5, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045687

RESUMEN

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.


Asunto(s)
Regulación de la Expresión Génica , Factor C1 de la Célula Huésped/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Factor C1 de la Célula Huésped/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Señales de Localización Nuclear , Secuencias Repetidas en Tándem
13.
Transcription ; 3(4): 187-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22771988

RESUMEN

Host cell factor-1(HCF-1) was first discovered as a cellular cofactor in the VP16-induced complex, a multi-protein DNA complex that forms on immediate early gene promoters of herpes simplex virus (HSV) to activate viral gene transcription. Subsequent research has revealed HCF-1 to be an abundant chromatin-associated protein that regulates various stages of the cell cycle. Recent reports show that HCF-1 interacts with diverse E2F proteins to induce cell-cycle-specific transcription. HCF-1 can act as a scaffold to a variety of histone-modifying proteins and these HCF-1-E2F-containing multi-protein complexes can bring about context-dependent activation or repression of transcription. In this review we examine the diversity of HCF-E2F interactions and the variety of multi-protein complexes it occurs in, to influence the local chromatin landscape at the E2F-promoters.


Asunto(s)
Ciclo Celular/fisiología , Factor C1 de la Célula Huésped/metabolismo , Transcripción Genética/fisiología , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Factor C1 de la Célula Huésped/química , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo
14.
Cell ; 144(3): 376-88, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295698

RESUMEN

The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked ß-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat. Replacement of the HCF-1(PRO) repeats by a heterologous proteolytic cleavage signal promotes HCF-1 proteolysis but fails to activate HCF-1(C)-subunit M phase functions. These results reveal an unexpected role of OGT in HCF-1 proteolytic maturation and an unforeseen nexus between OGT-directed O-GlcNAcylation and proteolytic maturation in HCF-1 cell-cycle regulation.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Ciclo Celular , Glicosilación , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Humanos , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/metabolismo , Alineación de Secuencia
15.
Mol Cell Biol ; 30(21): 5071-85, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20805357

RESUMEN

The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.


Asunto(s)
Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Factor de Transcripción YY1/química , Factor de Transcripción YY1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Bovinos , Línea Celular , Proliferación Celular , ADN/genética , ADN/metabolismo , Complejo IV de Transporte de Electrones/genética , Células HeLa , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Humanos , Técnicas In Vitro , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Homología de Secuencia de Ácido Nucleico , Transducción de Señal , Activación Transcripcional , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Factor de Transcripción YY1/antagonistas & inhibidores , Factor de Transcripción YY1/genética
16.
J Biol Chem ; 285(7): 4268-72, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20018852

RESUMEN

Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811-823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.


Asunto(s)
Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Acetilación , Línea Celular , Células HeLa , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Espectrometría de Masas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
17.
EMBO J ; 28(20): 3185-95, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19763085

RESUMEN

E2F1 is a key positive regulator of human cell proliferation and its activity is altered in essentially all human cancers. Deregulation of E2F1 leads to oncogenic DNA damage and anti-oncogenic apoptosis. The molecular mechanisms by which E2F1 mediates these two processes are poorly understood but are important for understanding cancer progression. During the G1-to-S phase transition, E2F1 associates through a short DHQY sequence with the cell-cycle regulator HCF-1 together with the mixed-lineage leukaemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases. We show here that the DHQY HCF-1-binding sequence permits E2F1 to stimulate both DNA damage and apoptosis, and that HCF-1 and the MLL family of H3K4 methyltransferases have important functions in these processes. Thus, HCF-1 has a broader role in E2F1 function than appreciated earlier. Indeed, sequence changes in the E2F1 HCF-1-binding site can modulate both up and down the ability of E2F1 to induce apoptosis indicating that HCF-1 association with E2F1 is a regulator of E2F1-induced apoptosis.


Asunto(s)
Apoptosis/fisiología , Daño del ADN/fisiología , Factor de Transcripción E2F1/fisiología , Factor C1 de la Célula Huésped/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Secuencia de Aminoácidos , Apoptosis/genética , Sitios de Unión , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Daño del ADN/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/fisiología , Humanos , Immunoblotting , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA