Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(12): 6880-6892, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125898

RESUMEN

How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.


Asunto(s)
Antibacterianos/farmacología , Dibekacina/análogos & derivados , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Antibacterianos/química , Dibekacina/química , Dibekacina/farmacología , Cinética , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factores de Terminación de Péptidos/antagonistas & inhibidores , Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/química , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo
2.
ACS Appl Bio Mater ; 4(5): 4607-4617, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006798

RESUMEN

Anti-EFG1 2'-OMethylRNA is an antisense oligonucleotide (ASO) that has the ability to recognize and block the EFG1 gene and to control Candida albicans filamentation. However, it is important to protect the anti-EFG1 2'-OMethylRNA ASO from the environmental human body conditions and to ensure that they will be delivered to their site of action, and polyplex microparticles (MPs) represent a class of vehicles to ASO cargo with these functionalities. Thus, the goal of this work was to develop polyplexes based on porous poly(γ-butyrolactam) (PA4) or poly(ε-caprolactam) (PA6) MPs for the anti-EFG1 2'-OMethylRNA ASO cargo and delivery. Two types of polyplexes were prepared with payloads of anti-EFG1 2'-OMethylRNA molecules, either entrapped or immobilized on prefabricated polyamide MPs. Our data confirm that PA4 and PA6 polyplex MPs can be feasible carriers for anti-EFG1 2'-OMethylRNA ASO molecules, using either the entrapment or immobilization strategies, whereby the released ASO maintains its activity against C. albicans cells.


Asunto(s)
Materiales Biocompatibles/farmacología , Candida albicans/efectos de los fármacos , Nylons/farmacología , Oligonucleótidos Antisentido/farmacología , Materiales Biocompatibles/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Ensayo de Materiales , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Nylons/química , Oligonucleótidos Antisentido/química , Tamaño de la Partícula , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factor G de Elongación Peptídica/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-28096160

RESUMEN

Argyrins are natural products with antibacterial activity against Gram-negative pathogens, such as Pseudomonas aeruginosa, Burkholderia multivorans, and Stenotrophomonas maltophilia We previously showed that argyrin B targets elongation factor G (FusA). Here, we show that argyrin B activity against P. aeruginosa PAO1 (MIC = 8 µg/ml) was not affected by deletion of the MexAB-OprM, MexXY-OprM, MexCD-OprJ, or MexEF-OprN efflux pump. However, argyrin B induced expression of MexXY, causing slight but reproducible antagonism with the MexXY substrate antibiotic ciprofloxacin. Argyrin B activity against Escherichia coli increased in a strain with nine tolC efflux pump partner genes deleted. Complementation experiments showed that argyrin was effluxed by AcrAB, AcrEF, and MdtFX. Argyrin B was inactive against Acinetobacter baumannii Differences between A. baumannii and P. aeruginosa FusA proteins at key residues for argyrin B interaction implied that natural target sequence variation impacted antibacterial activity. Consistent with this, expression of the sensitive P. aeruginosa FusA1 protein in A. baumannii conferred argyrin susceptibility, whereas resistant variants did not. Argyrin B was active against S. maltophilia (MIC = 4 µg/ml). Spontaneous resistance occurred at high frequency in the bacterium (circa 10-7), mediated by mutational inactivation of fusA1 rather than by amino acid substitutions in the target binding region. This strongly suggested that resistance occurred at high frequency through loss of the sensitive FusA1, leaving an alternate argyrin-insensitive elongation factor. Supporting this, an additional fusA-like gene (fusA2) is present in S. maltophilia that was strongly upregulated in response to mutational loss of fusA1.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Oligopéptidos/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Acinetobacter/efectos de los fármacos , Acinetobacter/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia/efectos de los fármacos , Burkholderia/metabolismo , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Factor G de Elongación Peptídica/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/metabolismo
4.
Cell Death Differ ; 24(2): 251-262, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27768122

RESUMEN

Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.


Asunto(s)
Mitocondrias/metabolismo , Acetilcisteína/farmacología , Secuencias de Aminoácidos , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos B , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
5.
Oncotarget ; 8(19): 32212-32227, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27793028

RESUMEN

Tumor requires tumor vasculature to supply oxygen and nutrients so as to support its continued growth, as well as provide a main route for metastatic spread. In this study, a TF-cascade-targeted strategy aiming to disrupt tumor blood vessels was developed by combination of TF-targeted HMME-loaded drug delivery system and PDT. PDT is a promising new modality in the treatment of cancers, which employs the interaction between a tumor-localizing photosensitizer and light of an appropriate wavelength to bring about ROS-induced cell death. In vitro results showed that protein EGFP-EGF1modification could significantly contribute to the uptake of nanoparticles by TF over-expressed BCECs. In vivo multispectral fluorescent imaging, the EGFP-EGF1 conjugated nanoparticles showed significantly higher accumulation in tumor tissues than non-conjugated ones. Tumor tissue slides further presented that EGFP-EGF1 conjugated nanoparticles showed significantly higher accumulation in tumor vasculature than non-conjugated ones. In vitro study demonstrated that PDT increased TF expression of BCECs. In vivo imaging, ex vivo imaging and tumor tissue slides showed that PDT further contribute EGFP-EGF1-NP accumulation in tumor. These promising results indicated that PDT enhanced EGFP-EGF1modified PEG-PLGA nanoparticle accumulation in tumor vaculature. Considering that EGFP-EGF1 conjugation enhanced nanoparticles uptake by TF over-expressed endothelium and PDT increased endothelium TF expression. We conclude that PDT triggered a TF cascade targeted effect. A combination of both EGFP-EGF1 modification and PDT provided a positive feed-back target effect to tumor vessels and might have a great potential for tumor therapy.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Antineoplásicos/administración & dosificación , Proteínas Mitocondriales/antagonistas & inhibidores , Nanopartículas , Neoplasias/metabolismo , Neoplasias/patología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacocinética , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Terapia Molecular Dirigida , Nanopartículas/química , Nanopartículas/ultraestructura , Neoplasias/terapia , Imagen Óptica/métodos , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Poliésteres/química , Polietilenglicoles/química , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nucleic Acids Res ; 44(7): 3264-75, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27001509

RESUMEN

The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos
7.
Cold Spring Harb Perspect Med ; 6(1): a025437, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729758

RESUMEN

Fusidic acid is an oral antistaphylococcal antibiotic that has been used in Europe for more than 40 years to treat skin infections as well as chronic bone and joint infections. It is a steroidal antibiotic and the only marketed member of the fusidane class. Fusidic acid inhibits protein synthesis by binding EF-G-GDP, which results in the inhibition of both peptide translocation and ribosome disassembly. It has a novel structure and novel mode of action and, therefore, there is little cross-resistance with other known antibiotics. Many mutations can occur in the FusA gene that codes for EF-G, and some of these mutations can result in high-level resistance (minimum inhibitory concentration [MIC] > 64 mg/L), whereas others result in biologically unfit staphylococci that require compensatory mutations to survive. Low-level resistance (<8 mg/L) is more common and is mediated by fusB, fusC, and fusD genes that code for small proteins that protect EF-G-GDP from binding fusidic acid. The genes for these proteins are spread by plasmids and can be selected mostly by topical antibiotic use. Reports of resistance have led to combination use of fusidic acid with rifampin, which is superseded by the development of a new dosing regimen for fusidic acid that can be used in monotherapy. It consists of a front-loading dose to decrease the potential for resistance development followed by a maintenance dose. This dosing regimen is now being used in clinical trials in the United States for skin and refractory bone and joint infections.


Asunto(s)
Antibacterianos/uso terapéutico , Ácido Fusídico/uso terapéutico , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Enfermedad Aguda , Administración Oral , Enfermedad Crónica , Farmacorresistencia Bacteriana , Quimioterapia Combinada , Humanos , Pruebas de Sensibilidad Microbiana , Rifampin/uso terapéutico
8.
Proc Natl Acad Sci U S A ; 113(4): 978-83, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755601

RESUMEN

Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Factor G de Elongación Peptídica/antagonistas & inhibidores , Biosíntesis de Proteínas/efectos de los fármacos , Viomicina/farmacología , Bacterias/metabolismo , Relación Dosis-Respuesta a Droga , Guanosina Trifosfato/química , Probabilidad , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Viomicina/metabolismo
9.
J Biol Chem ; 290(6): 3440-54, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25451927

RESUMEN

The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 µm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo
10.
Mol Biochem Parasitol ; 192(1-2): 39-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24211494

RESUMEN

Inhibition of growth of the malaria parasite Plasmodium falciparum by known translation-inhibitory antibiotics has generated interest in understanding their action on the translation apparatus of the two genome containing organelles of the malaria parasite: the mitochondrion and the relic plastid (apicoplast). We report GTPase activity of recombinant EF-G proteins that are targeted to the organelles and further use these to test the effect of the EF-G inhibitor fusidic acid (FA) on the factor-ribosome interface. Our results monitoring locking of EF-G·GDP onto surrogate Escherichia coli ribosomes as well as multi-turnover GTP hydrolysis by the factor indicate that FA has a greater effect on apicoplast EF-G compared to the mitochondrial counterpart. Deletion of a three amino acid (GVG) sequence in the switch I loop that is conserved in proteins of the mitochondrial EF-G1 family and the Plasmodium mitochondrial factor, but is absent in apicoplast EF-G, demonstrated that this motif contributes to differential inhibition of the two EF-Gs by FA. Additionally, the drug thiostrepton, that is known to target the apicoplast and proteasome, enhanced retention of only mitochondrial EF-G on ribosomes providing support for the reported effect of the drug on parasite mitochondrial translation.


Asunto(s)
Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Ácido Fusídico/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Insercional , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/genética , Unión Proteica , Conformación Proteica , Alineación de Secuencia
11.
PLoS One ; 7(9): e42657, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970117

RESUMEN

Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.


Asunto(s)
Oligopéptidos/metabolismo , Factor G de Elongación Peptídica/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Burkholderia/efectos de los fármacos , Línea Celular Tumoral , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Mamíferos , Pruebas de Sensibilidad Microbiana , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligopéptidos/química , Oligopéptidos/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factor G de Elongación Peptídica/química , Unión Proteica/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
12.
Nucleic Acids Res ; 40(1): 360-70, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908407

RESUMEN

Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Tioestreptona/farmacología , Factores de Elongación Transcripcional/antagonistas & inhibidores , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Mutación , Factor G de Elongación Peptídica/metabolismo , Factores de Iniciación de Péptidos , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Ribosomas/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
13.
Chem Biol ; 18(5): 589-600, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21609840

RESUMEN

The ribosome is a major target in the bacterial cell for antibiotics. Here, we dissect the effects that the thiopeptide antibiotics thiostrepton (ThS) and micrococcin (MiC) as well as the orthosomycin antibiotic evernimicin (Evn) have on translational GTPases. We demonstrate that, like ThS, MiC is a translocation inhibitor, and that the activation by MiC of the ribosome-dependent GTPase activity of EF-G is dependent on the presence of the ribosomal proteins L7/L12 as well as the G' subdomain of EF-G. In contrast, Evn does not inhibit translocation but is a potent inhibitor of back-translocation as well as IF2-dependent 70S-initiation complex formation. Collectively, these results shed insight not only into fundamental aspects of translation but also into the unappreciated specificities of these classes of translational inhibitors.


Asunto(s)
Aminoglicósidos/química , Antibacterianos/química , Factor G de Elongación Peptídica/antagonistas & inhibidores , Tioestreptona/química , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Sitios de Unión , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Péptidos/química , Péptidos/farmacología , Factor 2 Procariótico de Iniciación/metabolismo , Estructura Terciaria de Proteína , Tioestreptona/farmacología , Translocación Genética/efectos de los fármacos
14.
J Mol Biol ; 319(1): 27-35, 2002 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-12051934

RESUMEN

The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.


Asunto(s)
Antibacterianos/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factores de Iniciación de Péptidos/metabolismo , Péptidos , Unión Proteica/efectos de los fármacos , Ribosomas/metabolismo , Tioestreptona/farmacología , Bacteriocinas , Unión Competitiva , Western Blotting , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis/efectos de los fármacos , Mutación , Factor G de Elongación Peptídica/metabolismo , Factor 2 Procariótico de Iniciación , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Tiempo
15.
EMBO J ; 21(9): 2272-81, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11980724

RESUMEN

Ribosome recycling factor (RRF) together with elongation factor G (EF-G) disassembles the post- termination ribosomal complex. Inhibitors of translocation, thiostrepton, viomycin and aminoglycosides, inhibited the release of tRNA and mRNA from the post-termination complex. In contrast, fusidic acid and a GTP analog that fix EF-G to the ribosome, allowing one round of tRNA translocation, inhibited mRNA but not tRNA release from the complex. The release of tRNA is a prerequisite for mRNA release but partially takes place with EF-G alone. The data are consistent with the notion that RRF binds to the A-site and is translocated to the P-site, releasing deacylated tRNA from the P- and E-sites. The final step, the release of mRNA, is accompanied by the release of RRF and EF-G from the ribosome. With the model post-termination complex, 70S ribosomes were released from the post-termination complex by the RRF reaction and were then dissociated into subunits by IF3.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/fisiología , Factor G de Elongación Peptídica/fisiología , Proteínas/fisiología , ARN Mensajero/fisiología , ARN de Transferencia/fisiología , Escherichia coli , Sustancias Macromoleculares , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas/antagonistas & inhibidores , Proteínas Ribosómicas , Ribosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...