Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.665
Filtrar
1.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735540

RESUMEN

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Asunto(s)
Factor Inductor de la Apoptosis , Calcio , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1 , Presbiacusia , Animales , Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/genética , Ratas , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Calcio/metabolismo , Presbiacusia/metabolismo , Presbiacusia/patología , Presbiacusia/genética , Parthanatos/genética , Potencial de la Membrana Mitocondrial , Estría Vascular/metabolismo , Estría Vascular/patología , Apoptosis , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Ratas Sprague-Dawley , Daño del ADN , Envejecimiento/metabolismo , Envejecimiento/patología , Cóclea/metabolismo , Cóclea/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Masculino , Humanos , Células Cultivadas
2.
CNS Neurosci Ther ; 30(5): e14778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801174

RESUMEN

AIMS: Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS: An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS: Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE: SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.


Asunto(s)
Factor Inductor de la Apoptosis , Modelos Animales de Enfermedad , Epilepsia Refractaria , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Ratas Sprague-Dawley , Animales , Ratas , Factor Inductor de la Apoptosis/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/tratamiento farmacológico , Glicoproteínas de Membrana/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Anticonvulsivantes/farmacología
3.
Burns ; 50(6): 1562-1577, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38570249

RESUMEN

The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.


Asunto(s)
Apoptosis , Quemaduras , Fibroblastos , Calor , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Fibroblastos/patología , Fibroblastos/metabolismo , Quemaduras/patología , Calor/efectos adversos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Parthanatos , Necrosis , Células Cultivadas , Muerte Celular , Piel/patología , Piel/citología , Piel/lesiones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Caspasas/metabolismo , Roturas del ADN de Doble Cadena , Adenosina Trifosfato/metabolismo
4.
Structure ; 32(5): 594-602.e4, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38460521

RESUMEN

Apoptosis-inducing factor (AIF), which is confined to mitochondria of normal healthy cells, is the first identified caspase-independent cell death effector. Moreover, AIF is required for the optimal functioning of the respiratory chain machinery. Recent findings have revealed that AIF fulfills its pro-survival function by interacting with CHCHD4, a soluble mitochondrial protein which promotes the entrance and the oxidative folding of different proteins in the inner membrane space. Here, we report the crystal structure of the ternary complex involving the N-terminal 27-mer peptide of CHCHD4, NAD+, and AIF harboring its FAD (flavin adenine dinucleotide) prosthetic group in oxidized form. Combining this information with biophysical and biochemical data on the CHCHD4/AIF complex, we provide a detailed structural description of the interaction between the two proteins, validated by both chemical cross-linking mass spectrometry analysis and site-directed mutagenesis.


Asunto(s)
Factor Inductor de la Apoptosis , Dominio Catalítico , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Modelos Moleculares , Unión Proteica , Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Regulación Alostérica , Cristalografía por Rayos X , NAD/metabolismo , NAD/química , Sitios de Unión , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38449065

RESUMEN

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Asunto(s)
Factor Inductor de la Apoptosis , Modelos Animales de Enfermedad , Pérdida Auditiva , Animales , Humanos , Masculino , Ratones , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Técnicas de Sustitución del Gen , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Pérdida Auditiva/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Mutación , Transporte de Proteínas , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología
6.
Fish Shellfish Immunol ; 148: 109491, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490346

RESUMEN

As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin ß were mainly co-localized around the nucleus in vivo and silencing Ajimportin ß significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin ß-dependent pathway in sea cucumber.


Asunto(s)
Stichopus , Vibrio , Animales , Stichopus/genética , beta Carioferinas , Inmunidad Innata/genética , Factor Inductor de la Apoptosis/genética , Vibrio/fisiología , Apoptosis
7.
FEBS Lett ; 598(6): 658-669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467538

RESUMEN

Apoptosis-inducing factor 1 (AIF1) overexpression is intimately linked to the sensitivity of yeast cells towards hydrogen peroxide or acetic acid. Therefore, studying the mechanism of AIF1 regulation in the cell would provide a significant understanding of the factors guiding yeast apoptosis. In this report, we show the time-dependent induction of AIF1 under hydrogen peroxide stress. Additionally, we find that AIF1 expression in response to hydrogen peroxide is mediated by two transcription factors, Yap5 (DNA binding) and Cdc73 (non-DNA binding). Furthermore, substituting the H3K36 residue with another amino acid significantly abrogates AIF1 expression. However, substituting the lysine (K) in H3K4 or H3K79 with alanine (A) does not affect AIF1 expression level under hydrogen peroxide stress. Altogether, reduced AIF1 expression in cdc73Δ is plausibly due to reduced H3K36me3 levels in the cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Metilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Biomed Pharmacother ; 173: 116335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422661

RESUMEN

Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 µM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.


Asunto(s)
Antineoplásicos , Corynebacterium , Neoplasias , Humanos , Survivin , Apoptosis , Factor Inductor de la Apoptosis , Triptaminas/farmacología , Triptaminas/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Estrés Oxidativo , Línea Celular Tumoral , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Proliferación Celular
9.
J Neurosci Res ; 102(2): e25301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361405

RESUMEN

Our previous study found that receptor interacting protein 3 (RIP3) and apoptosis-inducing factor (AIF) were involved in neuronal programmed necrosis during global cerebral ischemia-reperfusion (I/R) injury. Here, we further studied its downstream mechanisms and the role of the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (BAF). A 20-min global cerebral I/R injury model was constructed using the 4-vessel occlusion (4-VO) method in male rats. 3-MA and BAF were injected into the lateral ventricle 1 h before ischemia. Spatial and activation changes of proteins were detected by immunofluorescence (IF), and protein interaction was determined by immunoprecipitation (IP). The phosphorylation of H2AX (γ-H2AX) and activation of mixed lineage kinase domain-like protein (p-MLKL) occurred as early as 6 h after reperfusion. RIP3, AIF, and cyclophilin A (CypA) in the neurons after I/R injury were spatially overlapped around and within the nucleus and combined with each other after reperfusion. The survival rate of CA1 neurons in the 3-MA and BAF groups was significantly higher than that in the I/R group. Autophagy was activated significantly after I/R injury, which was partially inhibited by 3-MA and BAF. Pretreatment with both 3-MA and BAF almost completely inhibited nuclear translocation, spatial overlap, and combination of RIP3, AIF, and CypA proteins. These findings suggest that after global cerebral I/R injury, RIP3, AIF, and CypA translocated into the nuclei and formed the DNA degradation complex RIP3/AIF/CypA in hippocampal CA1 neurons. Pretreatment with autophagy inhibitors could reduce neuronal necroptosis by preventing the formation of the RIP3/AIF/CypA complex and its nuclear translocation.


Asunto(s)
Isquemia Encefálica , Macrólidos , Daño por Reperfusión , Ratas , Masculino , Animales , Ciclofilina A/genética , Ciclofilina A/metabolismo , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Necroptosis , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Apoptosis , Neuronas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Autofagia
10.
Appl Microbiol Biotechnol ; 108(1): 135, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229306

RESUMEN

Apoptotic-like programmed cell death (PCD) is one of the main strategies for fungi to resist environmental stresses and maintain homeostasis. The apoptosis-inducing factor (AIF) has been shown in different fungi to trigger PCD through upregulating reactive oxygen species (ROS). This study identified a mitochondrial localized AIF homolog, CcAIF1, from Coprinopsis cinerea monokaryon Okayama 7. Heterologous overexpression of CcAIF1 in Saccharomyces cerevisiae caused apoptotic-like PCD of the yeast cells. Ccaif1 was increased in transcription when C. cinerea interacted with Gongronella sp. w5, accompanied by typical apoptotic-like PCD in C. cinerea, including phosphatidylserine externalization and DNA fragmentation. Decreased mycelial ROS levels were observed in Ccaif1 silenced C. cinerea transformants during cocultivation, as well as reduction of the apoptotic levels, mycelial growth, and asexual sporulation. By comparison, Ccaif1 overexpression led to the opposite phenotypes. Moreover, the transcription and expression levels of laccase Lcc9 decreased by Ccaif1 silencing but increased firmly in Ccaif1 overexpression C. cinerea transformants in coculture. Thus, in conjunction with our previous report that intracellular ROS act as signal molecules to stimulate defense responses, we conclude that CcAIF1 is a regulator of ROS to promote apoptotic-like PCD and laccase expression in fungal-fungal interactions. In an axenic culture of C. cinerea, CcAIF1 overexpression and H2O2 stimulation together increased laccase secretion with multiplied production yield. The expression of two other normally silent isozymes, Lcc8 and Lcc13, was unexpectedly triggered along with Lcc9. KEY POINTS: • Mitochondrial CcAIF1 induces PCD during fungal-fungal interactions • CcAIF1 is a regulator of ROS to trigger the expression of Lcc9 for defense • CcAIF1 overexpression and H2O2 stimulation dramatically increase laccase production.


Asunto(s)
Factor Inductor de la Apoptosis , Lacasa , Lacasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Apoptosis , Saccharomyces cerevisiae/metabolismo
11.
Hear Res ; 441: 108919, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043402

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.


Asunto(s)
Factor Inductor de la Apoptosis , Apoptosis , Pérdida Auditiva Central , NAD , Células Receptoras Sensoriales , Pérdida Auditiva Central/genética , Pérdida Auditiva Central/metabolismo , Pérdida Auditiva Central/fisiopatología , Apoptosis/efectos de los fármacos , NAD/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Dimerización , Mitocondrias/efectos de los fármacos , Células HEK293 , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calpaína/metabolismo , Activación Enzimática/efectos de los fármacos , Genotipo , Humanos , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo
13.
Med. intensiva (Madr., Ed. impr.) ; 47(12): 691-696, dic. 2023. tab, graf
Artículo en Inglés | IBECS | ID: ibc-228385

RESUMEN

Objective: Parthanatos is a form of programmed cell death mediated by apoptosis-inducing factor (AIF). However, there are not data on parthanatos in septic patients. The objective of the current study was to explore whether parthanatos is associated with mortality of septic patients. Design: Observational and prospective study. Setting: Three Spanish Intensive Care Units during 2017. Patients: Patients with sepsis according to Sepsis-3 Consensus criteria. Interventions: Serum AIF concentrations were determined at moment of sepsis diagnosis. Main variable of interest: Mortality at 30 days. Results: There were included 195 septic patients, and non-surviving (n=72) had serum AIF levels (p<0.001), lactic acid (p<0.001) and APACHE-II (p<0.001) that surviving (n=123). Multiple logistic regression analysis showed that patients with serum AIF levels>55.6ng/mL had higher mortality risk (OR=3.290; 95% CI=1.551−6.979; p=0.002) controlling for age, SOFA and lactic acid. Conclusions: Parthanatos is associated with mortality of septic patients. (AU)


Objetivo: Parthanatos es un tipo de muerte celular programada mediada por el factor inductor de apoptosis (AIF). Sin embargo, no hay datos sobre Parthanatos en pacientes sépticos. Por ello, el objetivo de este estudio fue explorar si Parthanatos está asociado con la morlaidad de los pacientes sépticos. Diseño: Estudio observacional y prospective. Ámbito: Tres Unidades de Cuidados Intensivos españolas durante 2017. Pacientes: Pacientes con sepsis en base a los criterios del Consenso Sepsis-3. Intervenciones: Se determinaron las concentraciones séricas de AIF en el momento del diagnóstico de la sepsis. Variable de interés principal: Mortalidad a los 30 días. Resultados: Se incluyeron 195 pacientes sépticos, y los que fallecieron (n=72) presentaron mayores concentraciones séricas de AIF (p<0.001) y de ácido láctico (p<0.001), y mayor puntuación APACHE-II (p<0.001) que los pacientes supervivientes (n=123). El análisis de regresión logística múltiple mostró que los pacientes con concentraciones séricas de AIF>55.6ng/mL tuvieron mayor riesgo de fallecer (OR=3.290; 95% CI=1.551−6.979; p=0.002) controlando por edad, SOFA y ácido láctico. Conclusiones: Parthanatos está asociado con la mortalidad de pacientes sépticos. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Sepsis/mortalidad , Estudios Prospectivos , Factor Inductor de la Apoptosis , España , Choque Séptico/mortalidad
14.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(11): 111-116, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37994896

RESUMEN

OBJECTIVE: To evaluate an effect of ethylmethylhydroxypyridine succinate and ethylmethylhydroxypyridine malate on changes in mitochondrial function under experimental focal cerebral ischemia. MATERIAL AND METHODS: Focal cerebral ischemia was modeled in Wistar rats by thermocoagulation of the middle cerebral artery. Ethylmethylhydroxypyridine succinate («Mexidol¼) and ethylmethylhydroxypyridine malate («Ethoxidol¼) were injected into the tail vein 30 minutes after ischemia simulation and then for 3 days at doses of 50 mg/kg, 100 mg/kg and 150 mg/kg. After 72 hours, changes in neurological deficits, aerobic and anaerobic respiration activity, the concentration of mitochondrial hydrogen peroxide and apoptosis-inducing factor, as well as the activity of succinate dehydrogenase and cytochrome c oxidase in brain tissue supernatants were assessed. RESULTS: The course administration of ethylmethylhydroxypyridine succinate and ethylmethylhydroxypyridine malate dose-dependently contributed to a decrease in the concentration of mitochondrial hydrogen peroxide and apoptosis-inducing factor in the brain tissue. The restoration of mitochondrial energy function was also shown with the use of ethylmethylhydroxypyridine succinate in all studied doses, while the administration of ethylmethylhydroxypyridine malate led to the restoration of mitochondrial-dependent energy production only at higher doses (100 mg/kg and 150 mg/kg). CONCLUSION: The effect of malic acid and succinic acid salts of ethylmethylhydroxypyridine on the change in the redox and apoptosis-regulating function of mitochondria does not depend on the type of anion, whereas the change in the energy function of mitochondria is associated with the salt residue included in the drug structure and its dosage.


Asunto(s)
Isquemia Encefálica , Malatos , Ratas , Animales , Malatos/farmacología , Ratas Wistar , Peróxido de Hidrógeno/farmacología , Factor Inductor de la Apoptosis/farmacología , Isquemia Encefálica/tratamiento farmacológico , Mitocondrias , Infarto Cerebral
15.
Mol Biochem Parasitol ; 256: 111593, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37708914

RESUMEN

Cell death in unicellular protozoan parasite Entamoeba histolytica is not yet reported though it displays several features of autophagic cell death. Autophagic cell death was reported to take place in ancient protozoans under several stresses. Here we report the occurrence of autophagic cell death in the Entamoeba histolytica trophozoites under oxidative stress as well as by the treatment with metronidazole, the most-widely-used drug for amoebiasis treatment and was shown to generate oxidative stress in the trophozoites. The autophagic flux increases during nutrient deprivation and metronidazole treatment and decreases upon oxidative stress. During oxidative stress the autophagy leads to nucleophagy that is ultimately destined to be digested within the lysosomal chamber. The formation of nucleophagosome depends on the apoptosis-inducing factor (AIF) that translocates to the nucleus from cytoplasm upon oxidative stress. It was experimentally proved that ATG8 (Autophagy-related protein 8) binds with the AIF in the nucleus of the trophozoites and helps in ATG8 recruitment and autophagy initiation overall suggesting that oxidative stress-driven AIF translocation to nucleus results in binding with ATG8 and initiates nucleophagy leading to cell death.


Asunto(s)
Entamoeba histolytica , Entamoeba histolytica/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Metronidazol/farmacología , Metronidazol/metabolismo , Muerte Celular , Autofagia
16.
Ann Clin Transl Neurol ; 10(10): 1844-1853, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37644805

RESUMEN

OBJECTIVES: Pathogenic variants in AIFM1 have been associated with a wide spectrum of disorders, spanning from CMT4X to mitochondrial encephalopathy. Here we present a novel phenotype and review the existing literature on AIFM1-related disorders. METHODS: We performed EEG recordings, brain MRI and MR Spectroscopy, metabolic screening, echocardiogram, clinical exome sequencing (CES) and family study. Effects of the variant were established on cultured fibroblasts from skin punch biopsy. RESULTS: The patient presented with drug-resistant, electro-clinical, multifocal seizures 6 h after birth. Brain MRI revealed prominent brain swelling of both hemispheres and widespread signal alteration in large part of the cortex and of the thalami, with sparing of the basal nuclei. CES analysis revealed the likely pathogenic variant c.5T>C; p.(Phe2Ser) in the AIFM1 gene. The affected amino acid residue is located in the mitochondrial targeting sequence. Functional studies on cultured fibroblast showed a clear reduction in AIFM1 protein amount and defective activities of respiratory chain complexes I, III and IV. No evidence of protein mislocalization or accumulation of precursor protein was observed. Riboflavin, Coenzyme Q10 and thiamine supplementation was therefore given. At 6 months of age, the patient exhibited microcephaly but did not experience any further deterioration. He is still fed orally and there is no evidence of muscle weakness or atrophy. INTERPRETATION: This is the first AIFM1 case associated with neonatal seizures and diffuse white matter involvement with relative sparing of basal ganglia, in the absence of clinical signs suggestive of myopathy or motor neuron disease.


Asunto(s)
Encefalomiopatías Mitocondriales , Enfermedad de la Neurona Motora , Masculino , Recién Nacido , Humanos , Mitocondrias/genética , Tiamina , Convulsiones , Factor Inductor de la Apoptosis
17.
Neuromolecular Med ; 25(4): 489-500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37603145

RESUMEN

AIFM1 is a mitochondrial flavoprotein involved in caspase-independent cell death and regulation of respiratory chain complex biogenesis. Mutations in the AIFM1 gene have been associated with multiple clinical phenotypes, but the effectiveness of riboflavin treatment remains controversial. Furthermore, few studies explored the reasons underlying this controversy. We reported a 7-year-old boy with ataxia, sensorimotor neuropathy and muscle weakness. Genetic and histopathological analyses were conducted, along with assessments of mitochondrial function and apoptosis level induced by staurosporine. Riboflavin deficiency and supplementation experiments were performed using fibroblasts. A missense c.1019T > C (p. Met340Thr) variant of AIFM1 was detected in the proband, which caused reduced expression of AIFM1 protein and mitochondrial dysfunction as evidenced by downregulation of mitochondrial complex subunits, respiratory deficiency and collapse of ΔΨm. The proportion of apoptotic cells in mutant fibroblasts was lower than controls after induction of apoptosis. Riboflavin deficiency resulted in decreased AIFM1 protein levels, while supplementation with high concentrations of riboflavin partially increased AIFM1 protein levels in variant fibroblasts. In addition, mitochondrial respiratory function of mutant fibroblasts was partly improved after riboflavin supplementation. Our study elucidated the pathogenicity of the AIFM1 c.1019T > C variant and revealed mutant fibroblasts was intolerant to riboflavin deficiency. Riboflavin supplementation is helpful in maintaining the level of AIFM1 protein and mitochondrial respiratory function. Early riboflavin treatment may serve as a valuable attempt for patients with AIFM1 variant.


Asunto(s)
Enfermedades Mitocondriales , Deficiencia de Riboflavina , Masculino , Humanos , Niño , Deficiencia de Riboflavina/genética , Deficiencia de Riboflavina/metabolismo , Riboflavina/uso terapéutico , Riboflavina/genética , Riboflavina/metabolismo , Mutación Missense , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo
18.
Cancer Res Commun ; 3(8): 1615-1627, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37615015

RESUMEN

Ewing sarcoma is a rare and deadly pediatric bone cancer for which survival rates and treatment options have stagnated for decades. Ewing sarcoma has not benefited from immunotherapy due to poor understanding of how its immune landscape is regulated. We recently reported that ubiquitin-specific protease 6 (USP6) functions as a tumor suppressor in Ewing sarcoma, and identified it as the first cell-intrinsic factor to modulate the Ewing sarcoma immune tumor microenvironment (TME). USP6 induces intratumoral infiltration and activation of multiple innate immune lineages in xenografted nude mice. Here we report that natural killer (NK) cells are essential for its tumor-inhibitory functions, as NK cell depletion reverses USP6-mediated suppression of Ewing sarcoma xenograft growth. USP6 expression in Ewing sarcoma cells directly stimulates NK cell activation and degranulation in vitro, and functions by increasing surface levels of multiple NK cell-activating ligands. USP6 also induces surface upregulation of the receptor for the apoptosis-inducing ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), providing an additional route for enhanced sensitivity to NK cell killing. Furthermore, USP6-expressing Ewing sarcoma and NK cells participate in a paracrine immunostimulatory feedforward loop, wherein IFNγ secreted by activated NK cells feeds back on USP6/Ewing sarcoma cells to induce synergistic expression of chemokines CXCL9 and CXCL10. Remarkably, expression of USP6 in subcutaneous Ewing sarcoma xenografts induces systemic activation and maturation of NK cells, and induces an abscopal response in which growth of distal tumors is inhibited, coincident with increased infiltration and activation of NK cells. This work reveals how USP6 reprograms the Ewing sarcoma TME to enhance antitumor immunity, and may be exploited for future therapeutic benefit. Significance: This study provides novel insights into the immunomodulatory functions of USP6, the only cancer cell-intrinsic factor demonstrated to regulate the immune TME in Ewing sarcoma. We demonstrate that USP6-mediated suppression of Ewing sarcoma tumorigenesis is dependent on NK cells. USP6 directly activates NK cell cytolytic function, inducing both intratumoral and systemic activation of NK cells in an Ewing sarcoma xenograft model.


Asunto(s)
Neoplasias Óseas , Tumores Neuroectodérmicos Periféricos Primitivos , Sarcoma de Ewing , Humanos , Animales , Ratones , Factor Intrinseco , Ligandos , Ratones Desnudos , Factor Inductor de la Apoptosis , Proteasas Ubiquitina-Específicas , Microambiente Tumoral , Ubiquitina Tiolesterasa
19.
Cell Death Dis ; 14(6): 375, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365177

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment caused by dysfunction of inner hair cells, ribbon synapses, spiral ganglion neurons and/or the auditory nerve itself. Approximately 1/7000 newborns have abnormal auditory nerve function, accounting for 10%-14% of cases of permanent hearing loss in children. Although we previously identified the AIFM1 c.1265 G > A variant to be associated with ANSD, the mechanism by which ANSD is associated with AIFM1 is poorly understood. We generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) via nucleofection with episomal plasmids. The patient-specific iPSCs were edited via CRISPR/Cas9 technology to generate gene-corrected isogenic iPSCs. These iPSCs were further differentiated into neurons via neural stem cells (NSCs). The pathogenic mechanism was explored in these neurons. In patient cells (PBMCs, iPSCs, and neurons), the AIFM1 c.1265 G > A variant caused a novel splicing variant (c.1267-1305del), resulting in AIF p.R422Q and p.423-435del proteins, which impaired AIF dimerization. Such impaired AIF dimerization then weakened the interaction between AIF and coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4). On the one hand, the mitochondrial import of ETC complex subunits was inhibited, subsequently leading to an increased ADP/ATP ratio and elevated ROS levels. On the other hand, MICU1-MICU2 heterodimerization was impaired, leading to mCa2+ overload. Calpain was activated by mCa2+ and subsequently cleaved AIF for its translocation into the nucleus, ultimately resulting in caspase-independent apoptosis. Interestingly, correction of the AIFM1 variant significantly restored the structure and function of AIF, further improving the physiological state of patient-specific iPSC-derived neurons. This study demonstrates that the AIFM1 variant is one of the molecular bases of ANSD. Mitochondrial dysfunction, especially mCa2+ overload, plays a prominent role in ANSD associated with AIFM1. Our findings help elucidate the mechanism of ANSD and may lead to the provision of novel therapies.


Asunto(s)
Factor Inductor de la Apoptosis , Calcio , Células Madre Pluripotentes Inducidas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Niño , Humanos , Recién Nacido , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo
20.
J Med Chem ; 66(13): 8767-8781, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37352470

RESUMEN

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and essential signaling protein associated with inflammation and cancers. One of the newly described roles of MIF is binding to apoptosis-inducing factor (AIF) that "brings" cells to death in pathological conditions. The interaction between MIF and AIF and their nuclear translocation stands as a central event in parthanatos. However, classical competitive MIF tautomerase inhibitors do not interfere with MIF functions in parthanatos. In this study, we employed a pharmacophore-switch to provide allosteric MIF tautomerase inhibitors that interfere with the MIF/AIF co-localization. Synthesis and screening of a focused compound collection around the 1,2,3-triazole core enabled identification of the allosteric tautomerase MIF inhibitor 6y with low micromolar potency (IC50 = 1.7 ± 0.1 µM). This inhibitor prevented MIF/AIF nuclear translocation and protects cells from parthanatos. These findings indicate that alternative modes to target MIF hold promise to investigate MIF function in parthanatos-mediated diseases.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Parthanatos , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factor Inductor de la Apoptosis , Inflamación/metabolismo , Oxidorreductasas Intramoleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...