Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 15(8): e1006979, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369559

RESUMEN

Regulation and maintenance of protein synthesis are vital to all organisms and are thus key targets of attack and defense at the cellular level. Here, we mathematically analyze protein synthesis for its sensitivity to the inhibition of elongation factor EF-Tu and/or ribosomes in dependence of the system's tRNA and codon compositions. We find that protein synthesis reacts ultrasensitively to a decrease in the elongation factor's concentration for systems with an imbalance between codon usages and tRNA concentrations. For well-balanced tRNA/codon compositions, protein synthesis is impeded more effectively by the inhibition of ribosomes instead of EF-Tu. Our predictions are supported by re-evaluated experimental data as well as by independent computer simulations. Not only does the described ultrasensitivity render EF-Tu a distinguished target of protein synthesis inhibiting antibiotics. It may also enable persister cell formation mediated by toxin-antitoxin systems. The strong impact of the tRNA/codon composition provides a basis for tissue-specificities of disorders caused by mutations of human mitochondrial EF-Tu as well as for the potential use of EF-Tu targeting drugs for tissue-specific treatments.


Asunto(s)
Codón/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/genética , Codón/metabolismo , Biología Computacional , Simulación por Computador , Humanos , Modelos Biológicos , Mutación , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo
2.
Mol Microbiol ; 106(1): 22-34, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28710887

RESUMEN

Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.


Asunto(s)
Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Actinomycetales/metabolismo , Infecciones por Actinomycetales/tratamiento farmacológico , Aminoglicósidos/uso terapéutico , Antibacterianos/metabolismo , Diseño de Fármacos , Escherichia coli/metabolismo , Guanosina Trifosfato , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos , Polienos/uso terapéutico , Piridonas/uso terapéutico , Ribosomas/metabolismo , Tiazoles
3.
PLoS One ; 12(5): e0178523, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28552981

RESUMEN

Understanding the molecular mechanism of antibiotics that are currently in use is important for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a well-established class of antibiotics that still have a role in treating microbial infections in humans. It is generally accepted that the main target of their action is the ribosome. The estimated affinity for tetracycline binding to the ribosome is relatively low compared to the actual potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the translation machinery have been discussed. Structural evidence suggests that tetracycline inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through interaction with the bound nucleotide. Based on this, tetracycline has been predicted to impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies addressing the effect of tetracycline on nucleotide binding have been prevented by the fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Furthermore, using physiologically relevant conditions, we demonstrate that tetracycline does not affect EF-Tu's intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does not directly impede the function of EF-Tu.


Asunto(s)
Bacterias/metabolismo , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Tetraciclina/farmacología , Cinética
4.
Cell Death Differ ; 24(2): 251-262, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27768122

RESUMEN

Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.


Asunto(s)
Mitocondrias/metabolismo , Acetilcisteína/farmacología , Secuencias de Aminoácidos , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Factor G de Elongación Peptídica/antagonistas & inhibidores , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos B , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
5.
RNA ; 20(2): 228-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24345396

RESUMEN

In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon-anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB's affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.


Asunto(s)
Escherichia coli/genética , Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Guanosina Trifosfato/química , Hidrólisis , Cinética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Mutación Puntual , Unión Proteica , Piridonas/farmacología , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética
6.
ChemMedChem ; 8(12): 1954-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24106106

RESUMEN

Three analogues of amythiamicin D, which differ in the substitution pattern at the methine group adjacent to C2 of the thiazole ring C, were prepared by de novo total synthesis. In amythiamicin D, this carbon atom is (S)-isopropyl substituted. Two of the new analogues carry a hydroxymethyl in place of the isopropyl group, one at an S- (compound 3 a) and the other at an R-configured stereogenic center (3 b). The third analogue, 3 c, contains a benzyloxymethyl group at an S-configured stereogenic center. Compounds 3 b and 3 c showed no inhibitory effect toward various bacterial strains, nor did they influence the translation of firefly luciferase. In stark contrast, compound 3 a inhibited the growth of Gram-positive bacteria Staphylococcus aureus (strains NCTC and Mu50) and Listeria monocytogenes EGD. In the firefly luciferase assay it proved more potent than amythiamicin D, and rescue experiments provided evidence that translation inhibition is due to binding to the bacterial elongation factor Tu (EF-Tu). The results were rationalized by structural investigations and by molecular dynamics simulations of the free compounds in solution and bound to the EF-Tu binding site. The low affinity of compound 3 b was attributed to the absence of a critical hydrogen bond, which stabilizes the conformation required for binding to EF-Tu. Compound 3 c was shown not to comply with the binding properties of the binding site.


Asunto(s)
Aminoácidos/química , Compuestos Macrocíclicos/química , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos/química , Tiazoles/química , Sitios de Unión , Carbono/química , Carbono/metabolismo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/metabolismo , Compuestos Macrocíclicos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Factor Tu de Elongación Peptídica/metabolismo , Péptidos/síntesis química , Péptidos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Azufre/química , Tiazoles/síntesis química , Tiazoles/farmacología
7.
J Med Chem ; 55(5): 2376-87, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22315981

RESUMEN

Clostridium difficile (C. difficile) is a Gram positive, anaerobic bacterium that infects the lumen of the large intestine and produces toxins. This results in a range of syndromes from mild diarrhea to severe toxic megacolon and death. Alarmingly, the prevalence and severity of C. difficile infection are increasing; thus, associated morbidity and mortality rates are rising. 4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for the treatment of C. difficile infection. The medicinal chemistry effort focused on enhancing aqueous solubility relative to that of the natural product and previous development candidates (2, 3) and improving antibacterial activity. Structure-activity relationships, cocrystallographic interactions, pharmacokinetics, and efficacy in animal models of infection were characterized. These studies identified a series of dicarboxylic acid derivatives, which enhanced solubility/efficacy profile by several orders of magnitude compared to previously studied compounds and led to the selection of LFF571 (4) as an investigational new drug for treating C. difficile infection.


Asunto(s)
Antibacterianos/síntesis química , Clostridioides difficile/efectos de los fármacos , Enterocolitis Seudomembranosa/tratamiento farmacológico , Tiazoles/síntesis química , Animales , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Cricetinae , Cristalografía por Rayos X , Enterococcus/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Femenino , Masculino , Mesocricetus , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/química , Ratas , Ratas Sprague-Dawley , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/farmacocinética , Agua
8.
Antimicrob Agents Chemother ; 56(5): 2493-503, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22290948

RESUMEN

The in vitro activities of LFF571, a novel analog of GE2270A that inhibits bacterial growth by binding with high affinity for protein synthesis elongation factor Tu, fidaxomicin, and 10 other antimicrobial agents were determined against 50 strains of Clostridium difficile and 630 other anaerobic and aerobic organisms of intestinal origin. LFF571 possesses potent activity against C. difficile and most other Gram-positive anaerobes (MIC(90), ≤ 0.25 µg/ml), with the exception of bifidobacteria and lactobacilli. The MIC(90)s for aerobes, including enterococci, Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA] isolates), Streptococcus pyogenes, and other streptococci were 0.06, 0.125, 2, and 8 µg/ml, respectively. Comparatively, fidaxomicin showed variable activity against Gram-positive organisms: MIC(90)s against C. difficile, Clostridium perfringens, and Bifidobacterium spp. were 0.5, ≤ 0.015, and 0.125 µg/ml, respectively, but >32 µg/ml against Clostridium ramosum and Clostridium innocuum. MIC(90) for S. pyogenes and other streptococci was 16 and >32 µg/ml, respectively. LFF571 and fidaxomicin were generally less active against Gram-negative anaerobes.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Bacterias Aerobias/efectos de los fármacos , Bacterias Anaerobias/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Tiazoles/farmacología , Bacterias Aerobias/crecimiento & desarrollo , Bacterias Aerobias/aislamiento & purificación , Bacterias Anaerobias/crecimiento & desarrollo , Bacterias Anaerobias/aislamiento & purificación , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/aislamiento & purificación , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterocolitis Seudomembranosa/microbiología , Fidaxomicina , Humanos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Biosíntesis de Proteínas/efectos de los fármacos , Especificidad de la Especie
9.
Antimicrob Agents Chemother ; 55(11): 5277-83, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21825297

RESUMEN

Recently, we identified aminothiazole derivatives of GE2270 A. These novel semisynthetic congeners, like GE2270 A, target the essential bacterial protein elongation factor Tu (EF-Tu). Medicinal chemistry optimization of lead molecules led to the identification of preclinical development candidates 1 and 2. These cycloalklycarboxylic acid derivatives show activity against difficult to treat Gram-positive pathogens and demonstrate increased aqueous solubility compared to GE2270 A. We describe here the in vitro and in vivo activities of compounds 1 and 2 compared to marketed antibiotics. Compounds 1 and 2 were potent against clinical isolates of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci (MIC(90) ≤ 0.25 µg/ml) but weaker against the streptococci (MIC(90) ≥ 4 µg/ml). Like GE2270 A, the derivatives inhibited bacterial protein synthesis and selected for spontaneous loss of susceptibility via mutations in the tuf gene, encoding EF-Tu. The mutants were not cross-resistant to other antibiotic classes. In a mouse systemic infection model, compounds 1 and 2 protected mice from lethal S. aureus infections with 50% effective doses (ED(50)) of 5.2 and 4.3 mg/kg, respectively. Similarly, compounds 1 and 2 protected mice from lethal systemic E. faecalis infections with ED(50) of 0.56 and 0.23 mg/kg, respectively. In summary, compounds 1 and 2 are active in vitro and in vivo activity against difficult-to-treat Gram-positive bacterial infections and represent a promising new class of antibacterials for use in human therapy.


Asunto(s)
Antibacterianos/uso terapéutico , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Tiazoles/uso terapéutico , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Células Hep G2 , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos Cíclicos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Tiazoles/efectos adversos , Tiazoles/química , Tiazoles/farmacología
10.
J Bacteriol ; 189(9): 3581-90, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17337575

RESUMEN

The antibiotic kirromycin inhibits prokaryotic protein synthesis by immobilizing elongation factor Tu (EF-Tu) on the elongating ribosome. Streptomyces ramocissimus, the producer of kirromycin, contains three tuf genes. While tuf1 and tuf2 encode kirromycin-sensitive EF-Tu species, the function of tuf3 is unknown. Here we demonstrate that EF-Tu3, in contrast to EF-Tu1 and EF-Tu2, is resistant to three classes of EF-Tu-targeted antibiotics: kirromycin, pulvomycin, and GE2270A. A mixture of EF-Tu1 and EF-Tu3 was sensitive to kirromycin and resistant to GE2270A, in agreement with the described modes of action of these antibiotics. Transcription of tuf3 was observed during exponential growth and ceased upon entry into stationary phase and therefore did not correlate with the appearance of kirromycin in stationary phase; thus, it is unlikely that EF-Tu3 functions as a resistant alternative for EF-Tu1. EF-Tu3 from Streptomyces coelicolor A3(2) was also resistant to kirromycin and GE2270A, suggesting that multiple antibiotic resistance is an intrinsic feature of EF-Tu3 species. The GE2270A-resistant character of EF-Tu3 demonstrated that this divergent elongation factor is capable of substituting for EF-Tu1 in vivo.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Streptomyces/efectos de los fármacos , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Piridonas/metabolismo , Piridonas/farmacología , ARN Bacteriano/biosíntesis , ARN Mensajero/biosíntesis , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces coelicolor/efectos de los fármacos , Tiazoles/farmacología , Transcripción Genética
11.
Antimicrob Agents Chemother ; 49(1): 131-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15616286

RESUMEN

Bacterial elongation factor Tu (EF-Tu) and EF-Ts are interacting proteins involved in polypeptide chain elongation in protein biosynthesis. A novel scintillation proximity assay for the detection of inhibitors of EF-Tu and EF-Ts, as well as the interaction between them, was developed and used in a high-throughput screen of a chemical library. Several compounds from a variety of chemical series with inhibitory properties were identified, including certain indole dipeptides, benzimidazole amidines, 2-arylbenzimidazoles, N-substituted imidazoles, and N-substituted guanidines. The in vitro activities of these compounds were confirmed in a coupled bacterial transcription-translation assay. Several indole dipeptides were identified as inhibitors of bacterial translation, with compound 2 exhibiting a 50% inhibitory concentration of 14 microM and an MIC for S. aureus ATCC 29213 of 5.6 microg/ml. Structure-activity relationship studies around the dipeptidic indoles generated additional analogs with low micromolar MICs for both gram-negative and gram-positive bacteria. To assess the specificity of antibacterial action, these compounds were evaluated in a metabolic labeling assay with Staphylococcus aureus. Inhibition of translation, as well as limited effects on other macromolecular pathways for some of the analogs studied, indicated a possible contribution from a non-target-based antibacterial mechanism of action.


Asunto(s)
Antibacterianos/química , Dipéptidos/química , Dipéptidos/farmacología , Indoles/química , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factores de Elongación de Péptidos/antagonistas & inhibidores , Antibacterianos/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Cocos Grampositivos/efectos de los fármacos , Guanidinas/química , Guanidinas/farmacología , Imidazoles/química , Imidazoles/farmacología , Sustancias Macromoleculares/metabolismo , Pruebas de Sensibilidad Microbiana , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
12.
Biochemistry ; 43(49): 15550-6, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15581367

RESUMEN

The antibiotic pulvomycin is an inhibitor of protein synthesis that prevents the formation of the ternary complex between elongation factor (EF-) Tu.GTP and aminoacyl-tRNA. In this report, novel aspects of its action on EF-Tu are described. Pulvomycin markedly affects the equilibrium and kinetics of the EF-Tu-nucleotide interaction, particularly of the EF-Tu.GTP complex. The binding affinity of EF-Tu for GTP is increased 1000 times, mainly as the consequence of a dramatic decrease in the dissociation rate of this complex. In contrast, the affinity for GDP is decreased 10-fold due to a marked increase in the dissociation rate of EF-Tu.GDP (25-fold) that mimics the action of EF-Ts, the GDP/GTP exchange factor of EF-Tu. The effects of pulvomycin and EF-Ts can coexist and are simply additive, supporting the conclusion that these two ligands interact with different sites of EF-Tu. This is further confirmed on native PAGE by the ability of EF-Tu to bind the EF-Ts and the antibiotic simultaneously. Pulvomycin enhances the intrinsic EF-Tu GTPase activity, like kirromycin, though to a much more modest extent. As with kirromycin, this stimulation depends on the concentration and nature of the monovalent cations, Li(+) being the most effective one, followed by Na(+), K(+), and NH(4)(+). In the presence of pulvomycin (in contrast to kirromycin), aa-tRNA and/or ribosomes do not enhance the GTPase activity of EF-Tu. The property of pulvomycin to modify selectively the conformation(s) of EF-Tu is also supported by its effect on heat- and urea-dependent denaturation, and tryptic digestion of the protein. Specific differences and similarities between the action of pulvomycin and the other EF-Tu-specific antibiotics are described and discussed.


Asunto(s)
Aminoglicósidos/química , Antibacterianos/química , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos/química , Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Estabilidad de Enzimas , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factores de Elongación de Péptidos/metabolismo , Péptidos Cíclicos/metabolismo , Desnaturalización Proteica , Piridonas/química , Piridonas/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tripsina/metabolismo , Urea/química
13.
Extremophiles ; 8(6): 499-505, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15290325

RESUMEN

The thiazolyl-peptide antibiotic GE2270A, an inhibitor of the elongation factor Tu from Escherichia coli (EcEF-Tu), was used to study the effects produced in the biochemical properties of the archaeal functional analogue elongation factor 1alpha from Sulfolobus solfataricus (SsEF-1alpha). GE2270A did not substantially affect the poly(U)-directed-polyPhe incorporation catalyzed by SsEF-1alpha and the formation of the ternary complex SsEF-1alpha.GTP.Phe-tRNAPhe. On the other hand, the antibiotic was able to increase the GDP/GTP exchange rate of SsEF-1alpha; nevertheless, this improvement was not associated with an increase in the catalytic activity of the enzyme. In fact, GE2270A inhibited both the intrinsic GTPase of SsEF-1alpha (GTPaseNa) and that stimulated by ribosomes. Interestingly, GTPaseNa of both intact and C-terminal-deleted SsEF-1alpha resulted in a greater sensitivity to the antibiotic with respect to SsEF-1alpha lacking both the M- and C-terminal domains. This result suggested that, similar to what is found for EcEF-Tu, the M domain of SsEF-1alpha is the region of the enzyme most responsible for the interaction with GE2270A. The different behavior observed in the inhibition of protein synthesis with respect to EcEF-Tu can be ascribed to the different adaptive structural changes that have occurred in SsEF-1alpha during evolution.


Asunto(s)
Antibacterianos/farmacología , Factor 1 de Elongación Peptídica/metabolismo , Péptidos Cíclicos/farmacología , Sulfolobus solfataricus/efectos de los fármacos , Sulfolobus solfataricus/metabolismo , Tiazoles/farmacología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Nucleótidos de Guanina/metabolismo , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Ingeniería de Proteínas , ARN Bacteriano/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/genética
14.
Chem Biol ; 10(2): 161-8, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12618188

RESUMEN

The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.


Asunto(s)
Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Biblioteca de Péptidos , Péptidos/metabolismo , Péptidos/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Datos de Secuencia Molecular , Oligonucleótidos/química , Factor Tu de Elongación Peptídica/metabolismo , Péptidos/síntesis química , Conformación Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Curr Protein Pept Sci ; 3(1): 121-31, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12370016

RESUMEN

Since the pioneering discovery of the inhibitory effects of kirromycin on bacterial elongation factor Tu (EF-Tu) more than 25 years ago [1], a great wealth of biological data has accumulated concerning protein biosynthesis inhibitors specific for EF-Tu. With the subsequent discovery of over two dozen naturally occurring EF-Tu inhibitors belonging to four different subclasses, EF-Tu has blossomed into an appealing antimicrobial target for rational drug discovery efforts. Very recently, independent crystal structure determinations of EF-Tu in complex with two potent antibiotics, aurodox and GE2270A, have provided structural explanations for the mode of action of these two compounds, and have set the foundation for the design of inhibitors with higher bioavailability, broader spectra, and greater efficacy.


Asunto(s)
Aminoglicósidos , Antibacterianos/farmacología , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Farmacorresistencia Bacteriana/genética , Sustancias Macromoleculares , Polienos/metabolismo , Piridonas/farmacología , Tiazoles/farmacología
16.
Appl Environ Microbiol ; 68(10): 4894-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12324336

RESUMEN

The mosquitocidal toxin (MTX) produced by Bacillus sphaericus strain SSII-1 is an approximately 97-kDa single-chain toxin which contains a 27-kDa enzyme domain harboring ADP-ribosyltransferase activity and a 70-kDa putative binding domain. Due to cytotoxicity toward bacterial cells, the 27-kDa enzyme fragment cannot be produced in Escherichia coli expression systems. However, a nontoxic 32-kDa N-terminal truncation of MTX can be expressed in E. coli and subsequently cleaved to an active 27-kDa enzyme fragment. In vitro the 27-kDa enzyme fragment of MTX ADP-ribosylated numerous proteins in E. coli lysates, with dominant labeling of an approximately 45-kDa protein. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry combined with peptide mapping identified this protein as the E. coli elongation factor Tu (EF-Tu). ADP ribosylation of purified EF-Tu prevented the formation of the stable ternary EF-Tuaminoacyl-tRNAGTP complex, whereas the binding of GTP to EF-Tu was not altered. The inactivation of EF-Tu by MTX-mediated ADP-ribosylation and the resulting inhibition of bacterial protein synthesis are likely to play important roles in the cytotoxicity of the 27-kDa enzyme fragment of MTX toward E. coli.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Bacillus/química , Toxinas Bacterianas/farmacología , Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Mutación , Factor Tu de Elongación Peptídica/metabolismo , Fragmentos de Péptidos/farmacología , Plásmidos , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo
17.
Biochemistry ; 39(1): 37-45, 2000 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-10625477

RESUMEN

The structure of a 1:1 molar complex between Escherichia coli elongation factor (EF) Tu-GDP and the cyclic thiazolyl peptide antibiotic, GE2270A, has been determined by X-ray diffraction analysis to a resolution of 2.35 A and refined to a crystallographic refinement factor of 20.6%. The antibiotic binds in the second domain of EF-Tu-GDP, making contact with three segments of amino acids (residues 215-230, 256-264, and 273-277). The majority of the protein-antibiotic contacts are van der Waals interactions. A striking feature of the antibiotic binding site is the presence of a salt bridge, not previously observed in other EF-Tu complexes. The ionic interaction between Arg 223 and Glu 259 forms over the antibiotic and probably accounts for the strong affinity observed between EF-Tu and GE2270A. Arg 223 and Glu 259 are highly conserved, but not invariant throughout the prokaryotic EF-Tu family, suggesting that the antibiotic may bind EF-Tu from some organisms better than others may. Superposition of the antibiotic binding site on the EF-Tu-GTP conformation reveals that one region of the antibiotic would form steric clashes with the guanine nucleotide-binding domain in the GTP, but not the GDP, conformation. Another region of the antibiotic binds to the same site as the aminoacyl group of tRNA. Together with prior biochemical studies, the structural findings confirm that GE2270A inhibits protein synthesis by blocking the GDP to GTP conformational change and by directly competing with aminoacyl-tRNA for the same binding site on EF-Tu. In each of the bacterial strains that are resistant to GE2270A, the effect of a site-specific mutation in EF-Tu could explain resistance. Comparison of the GE2270A site in EF-Tu with sequence homologues, EF-G and EF-1alpha, suggests steric clashes that would prevent the antibiotic from binding to translocation factors or to the eukaryotic equivalent of EF-Tu. Although GE2270A is a potent antibiotic, its clinical efficacy is limited by its low aqueous solubility. The results presented here provide the details necessary to enhance the solubility of GE2270A without disrupting its inhibitory properties.


Asunto(s)
Antibacterianos/química , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/química , Péptidos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Microbiana , Escherichia coli/enzimología , Modelos Moleculares , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Conformación Proteica , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología
18.
Protist ; 150(2): 189-95, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10505418

RESUMEN

Elongation factor Tu (EF-Tu) is encoded by the tuf gene of the plastid organelle of the malaria parasite Plasmodium falciparum. A range of structurally unrelated inhibitors of this GTP-dependent translation factor was shown to have antimalarial activity in blood cultures. The most active was the cyclic thiazolyl peptide amythiamicin A with an IC50 = 0.01 microM. Demonstrable complexes were formed in vitro between a recombinant version of P. falciparum EF-Tu(pl) and inhibitors that bind to different sites on EF-Tu; these included the antibiotics kirromycin, GE2270A and enacyloxin IIa.


Asunto(s)
Antibacterianos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/biosíntesis , Animales , Antibacterianos/metabolismo , Sitios de Unión , Genes Protozoarios , Compuestos Macrocíclicos , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Plasmodium falciparum/genética , Plastidios/efectos de los fármacos , Plastidios/genética , Plastidios/metabolismo , Polienos/metabolismo , Polienos/farmacología , Piridonas/metabolismo , Piridonas/farmacología , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Tiazoles/metabolismo , Tiazoles/farmacología
19.
Biochemistry ; 38(40): 13035-41, 1999 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-10529173

RESUMEN

The properties of variants of elongation factor (EF) Tu mutated at three positions implicated in its GTPase activity are presented. Mutation I60A, which reduces one wing of a "hydrophobic barrier" screening off the nucleophilic water molecule found at the GTP gamma-phosphate, causes a reduction of the intrinsic GTPase activity contrary to prediction and has practically no influence on other properties. Mutation D80N, which in the isolated G-domain of EF-Tu caused a strong stimulation of the intrinsic GTPase, reduces this activity in the intact molecule. However, whereas for wild-type EF-Tu complex formation with aa-tRNA reduces the GTPase, EF-Tu[D80N] shows a strongly increased activity when bound to Phe-tRNA. Moreover, ribosomes or kirromycin can stimulate its GTPase up to the same level as for wild-type. This indicates that a local destabilization of the magnesium binding network does not per se cause an increased GTPase but does affect its tight regulation. Interestingly, mutant D80N sequestrates EF-Ts by formation of a more stable complex. Substitutions T61A and T61N induce low intrinsic GTPase, and the stimulation by ribosome is less for T61A than for T61N but still detectable, while kirromycin stimulates the GTPase of both mutants equally. This provides more evidence that stimulation by kirromycin and ribosomes follows a different mechanism. The functional implications of these mutations are discussed in the context of a transition state mechanism for catalysis. An alternative structural explanation for the strong conservation of Ile-60 is proposed.


Asunto(s)
Ácido Aspártico/genética , GTP Fosfohidrolasas/genética , Isoleucina/genética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/genética , Treonina/genética , Sitios de Unión/genética , Escherichia coli/enzimología , Escherichia coli/genética , Ésteres , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/biosíntesis , Factor Tu de Elongación Peptídica/metabolismo , Péptidos/síntesis química , Piridonas/química , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Ribosomas/metabolismo
20.
Eur J Biochem ; 247(1): 59-65, 1997 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9249009

RESUMEN

The interaction of N-tosyl-L-phenylalanylchloromethane (TosPheCH2Cl) with Thermus thermophilus elongation factor Tu (EF-Tu) was studied by affinity labelling and NMR spectroscopy. TosPheCH2Cl binds to GDP and GTP conformers of EF-Tu. The interaction of TosPheCH2Cl with EF-Tu x GDP leads to alkylation of Cys82, while interaction of TosPheCH2Cl with EF-Tu x GTP does not lead to covalent labelling. [A82]EF-Tu, in which the Cys82 is replaced by Ala, has similar properties to wild-type EF-Tu with respect to GTPase activity, binding of guanine nucleotides, interaction with elongation factor Ts (EF-Ts) and interaction with ribosomes. This structural change did not lead to changes, compared with wild-type EF-Tu in the functionality of [A82]EF-Tu, either in the GTP or in the GDP conformation. TosPheCH2Cl binds to EF-Tu x GTP with a dissociation constant of 10 microM. The interaction of TosPheCH2Cl with EF-Tu promotes the hydration of the carbonyl group of TosPheCH2Cl. TosPheCH2Cl competes with aminoacyl-tRNA for its binding site on EF-Tu x GTP. Covalent modification of Cys82 by TosPheCH2Cl does not prevent nucleotide binding and GTPase activity, but interferes with the interaction with aminoacyl-tRNA. TosPheCH2Cl probably mimics the aminoacyl residue of the aminoacyl-tRNA and binds to its binding site on EF-Tu x GTP. This rather specific interaction with EF-Tu x GTP does not allow the modification of Cys82, whereas the loose interaction of TosPheCH2Cl with EF-Tu x GDP leads to alkylation of this residue.


Asunto(s)
Factor Tu de Elongación Peptídica/metabolismo , Thermus thermophilus/química , Clorometilcetona de Tosilfenilalanila/farmacología , Marcadores de Afinidad , Sitios de Unión , Guanosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Clorometilcetona de Tosilfenilalanila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...