Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.657
Filtrar
1.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769116

RESUMEN

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Asunto(s)
Células Endoteliales , Accidente Cerebrovascular Isquémico , Linfocinas , Pericitos , Factor de Crecimiento Derivado de Plaquetas , Pericitos/metabolismo , Pericitos/patología , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratones , Linfocinas/metabolismo , Linfocinas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Humanos , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Movimiento Celular
2.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565573

RESUMEN

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Asunto(s)
Glucosa , Factor de Crecimiento Derivado de Plaquetas , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Vesículas Transportadoras/metabolismo
3.
Artículo en Ruso | MEDLINE | ID: mdl-38676689

RESUMEN

OBJECTIVE: To evaluate the clinical and laboratory correlation of biomarkers with anti- and pro-apoptotic activity with the severity of motor and non-motor symptoms depending on the progression rate of Parkinson's disease (PD). MATERIAL AND METHODS: A wide range of non-motor symptoms (emotional-affective, cognitive, psychotic and behavioral disorders, fatigue, sleep disorders and autonomic disorders) was evaluated using validated scales and a number of serum neuromarkers responsible for neuroplasticity and neuronal survival processes (BDNF, PDGF, cathepsin D) in 71 patients with PD (mean age 65 (55; 70) years, disease duration 7 (4; 9) years, age of onset 57 (49; 62) years). RESULTS: The concentration of biomarkers (BDNF, PDGF and cathepsin D) was the lowest in the group of patients with a rapid PD progression rate (p<0.001, p=0.001 and p=0.031, respectively), the severity of motor and most non-motor symptoms was higher (p=0.023 and p=0.001, respectively) compared to middle and slow progression rate. There were correlations between BDNF concentration and the severity of depression (r=-0.63, p<0.001), apathy (r=-0.48, p<0.001), impulsive behavioral disorders (r=0.500, p<0.001), level of cognitive functions (r=0.54, p<0.001), motor symptoms (r=-0.43, p<0.001); between PDGF level and the severity of motor manifestations of PD (r=-0.30, p=0.011), depression (r=-0.70, p<0.001), apathy (r=-0.460, p<0.001), the degree of severity of behavioral disorders (r=0.742, p<0.001). No significant correlations were observed between the level of cathepsin D and the severity of clinical manifestations of PD, which indicates the connection of cathepsin D with the general pathogenesis of PD. CONCLUSION: The possibility of using serum proteins of the neurotrophin subfamily and the protein associated with autophagy, cathepsin D, as biomarkers that determine the prognosis of PD, is considered.


Asunto(s)
Biomarcadores , Factor Neurotrófico Derivado del Encéfalo , Catepsina D , Progresión de la Enfermedad , Enfermedad de Parkinson , Factor de Crecimiento Derivado de Plaquetas , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , Factor Neurotrófico Derivado del Encéfalo/sangre , Catepsina D/sangre , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/análisis , Índice de Severidad de la Enfermedad
4.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38667172

RESUMEN

The homeostasis of cellular calcium is fundamental for many physiological processes, while the calcium levels remain inhomogeneous within cells. During the onset of asthma, epithelial and inflammatory cells secrete platelet-derived growth factor (PDGF), inducing the proliferation and migration of airway smooth muscle (ASM) to the epidermal layer, narrowing the airway. The regulation of ASM cells by PDGF is closely related to the conduction of calcium signals. In this work, we generated subcellular-targeted FRET biosensors to investigate calcium regulation in the different compartments of ASM cells. A PDGF-induced cytoplasmic calcium [Ca2+]C increase was attributed to both extracellular calcium influx and endoplasmic reticulum (ER) calcium [Ca2+]ER release, which was partially regulated by the PLC-IP3R pathway. Interestingly, the removal of the extracellular calcium influx led to inhibited ER calcium release, likely through inhibitory effects on the calcium-dependent activation of the ER ryanodine receptor. The inhibition of the L-type calcium channel on the plasma membrane or the SERCA pump on the ER resulted in both reduced [Ca2+]C and [Ca2+]ER from PDGF stimulation, while IP3R channel inhibition led to reduced [Ca2+]C only. The inhibited SERCA pump caused an immediate [Ca2+]C increase and [Ca2+]ER decrease, indicating active calcium exchange between the cytosol and ER storage in resting cells. PDGF-induced calcium at the outer mitochondrial membrane sub-region showed a similar regulatory response to cytosolic calcium, not influenced by the inhibition of the mitochondrial calcium uniporter channel. Therefore, our work identifies calcium flow pathways among the extracellular medium, cell cytosol, and ER via regulatory calcium channels. Specifically, extracellular calcium flow has an essential function in fully activating ER calcium release.


Asunto(s)
Técnicas Biosensibles , Calcio , Transferencia Resonante de Energía de Fluorescencia , Miocitos del Músculo Liso , Factor de Crecimiento Derivado de Plaquetas , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Humanos , Retículo Endoplásmico/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio
5.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674127

RESUMEN

Platelet-rich fibrin (PRF) is a widely used autologous blood concentrate in regenerative medicine. This study aimed to characterize the cellular composition and distribution of different PRF matrices generated by high (710 g) and low (44 g) relative centrifugal forces (RCFs) and to analyze their bioactivity on human primary osteoblasts (pOBs). PRF was separated into upper layer (UL) and buffy coat (BC) fractions, and their cellular contents were assessed using histological and immunohistochemical staining. The release of platelet-derived growth factor (PDGF) and transforming growth factor (TGF-ß) was quantified using an ELISA. Indirect PRF treatment on pOBs was performed to evaluate cell viability and morphology. A histological analysis revealed higher quantities of leukocytes and platelets in the low-RCF PRF. TGF-ß release was significantly higher in the low-RCF PRF compared to the high-RCF PRF. All PRF fractions promoted pOB proliferation regardless of the centrifugation protocol used. The low-RCF PRF showed higher TGF-ß levels than the high-RCF PRF. These findings contribute to understanding the cellular mechanisms of PRF and provide insights into optimizing PRF protocols for bone regeneration, advancing regenerative medicine, and improving patient outcomes.


Asunto(s)
Proliferación Celular , Leucocitos , Osteoblastos , Fibrina Rica en Plaquetas , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Leucocitos/metabolismo , Leucocitos/citología , Células Cultivadas , Factor de Crecimiento Transformador beta/metabolismo , Supervivencia Celular , Factor de Crecimiento Derivado de Plaquetas/metabolismo
6.
Life Sci ; 347: 122617, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608835

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Asunto(s)
Plaquetas , Daño por Reperfusión Miocárdica , Factor de Activación Plaquetaria , Factor de Crecimiento Derivado de Plaquetas , Factor A de Crecimiento Endotelial Vascular , Humanos , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Plaquetas/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Infarto del Miocardio/patología
7.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614383

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Asunto(s)
Movimiento Celular , Proliferación Celular , Macrófagos , Miocitos del Músculo Liso , Factor de Transcripción STAT3 , Transducción de Señal , Triterpenos , Triterpenos/farmacología , Triterpenos/uso terapéutico , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Factor de Transcripción STAT3/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratas Sprague-Dawley , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Supervivencia Celular/efectos de los fármacos , Monocrotalina , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Becaplermina/farmacología , Remodelación Vascular/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología
8.
Cancer Rep (Hoboken) ; 7(3): e2018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488488

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM: This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-ß)/TGFßRs signaling systems in CAFs. METHODS AND RESULTS: Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFßRII and PDGFRα/ß induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-ß receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRß signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-ß, as compared with controls. CONCLUSION: Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-ß receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-ß receptor signaling.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Fibroblastos/metabolismo , Fibroblastos/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Neoplasias/patología
9.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309427

RESUMEN

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Asunto(s)
Nefritis Hereditaria , Animales , Ratones , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrosis , Riñón/patología , Ratones Noqueados , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/uso terapéutico
10.
Mol Med ; 30(1): 21, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317079

RESUMEN

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Asunto(s)
Pericitos , Factor de Crecimiento Derivado de Plaquetas , Ratones , Humanos , Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Pericitos/metabolismo , Becaplermina/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Medios de Cultivo Condicionados/metabolismo , Lipopolisacáridos , Transducción de Señal , Inflamación/metabolismo , Ratones Noqueados , Obesidad/metabolismo , Hipotálamo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo
11.
Biosci Biotechnol Biochem ; 88(5): 522-528, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38341279

RESUMEN

Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.


Asunto(s)
Actinas , Colágeno Tipo I , Estimulación Eléctrica , Fibroblastos , Factor de Crecimiento Derivado de Plaquetas , Humanos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Actinas/metabolismo , Actinas/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Mesilato de Imatinib/farmacología , Diferenciación Celular/efectos de los fármacos , Piel/metabolismo , Piel/citología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Dermis/citología , Dermis/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Regulación hacia Arriba
12.
Am J Pathol ; 194(4): 574-598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37838010

RESUMEN

This study sought to define key molecules and signals controlling major steps in vascular morphogenesis, and how these signals regulate pericyte recruitment and pericyte-induced basement membrane deposition. The morphogenic impact of endothelial cell (EC) expression of activating mutants of Kirsten rat sarcoma virus (kRas), mitogen-activated protein kinase 1 (Mek1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), Akt serine/threonine kinase 1 (Akt1), Ras homolog enriched in brain (Rheb) Janus kinase 2 (Jak2), or signal transducer and activator of transcription 3 (Stat3) expression versus controls was evaluated, along with EC signaling events, pharmacologic inhibitor assays, and siRNA suppression experiments. Primary stimulators of EC lumen formation included kRas, Akt1, and Mek1, whereas PIK3CA and Akt1 stimulated a specialized type of cystic lumen formation. In contrast, the key drivers of EC sprouting behavior were Jak2, Stat3, Mek1, PIK3CA, and mammalian target of rapamycin (mTor). These conclusions are further supported by pharmacologic inhibitor and siRNA suppression experiments. EC expression of active Akt1, kRas, and PIK3CA led to markedly dysregulated lumen formation coupled to strongly inhibited pericyte recruitment and basement membrane deposition. For example, activated Akt1 expression in ECs excessively stimulated lumen formation, decreased EC sprouting behavior, and showed minimal pericyte recruitment with reduced mRNA expression of platelet-derived growth factor-BB, platelet-derived growth factor-DD, and endothelin-1, critical EC-derived factors known to stimulate pericyte invasion. The study identified key signals controlling fundamental steps in capillary morphogenesis and maturation and provided mechanistic details on why EC activating mutations induced a capillary deficiency state with abnormal lumens, impaired pericyte recruitment, and basement deposition: predisposing stimuli for the development of vascular malformations.


Asunto(s)
Células Endoteliales , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Endoteliales/metabolismo , Morfogénesis/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Mutación , ARN Interferente Pequeño/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo
13.
Neurol Med Chir (Tokyo) ; 64(1): 50-55, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38030262

RESUMEN

Angiogenesis is one of the growth mechanisms of chronic subdural hematoma (CSDH). Pericytes have been implicated in the capillary sprouting during angiogenesis and are involved in brain ischemia and diabetic retinopathy. This study examined the pericyte expressions in CSDH outer membranes obtained during trepanation surgery. Eight samples of CSDH outer membranes and 35 samples of CSDH fluid were included. NG2, N-cadherin, VE-cadherin, Tie-2, endothelial nitric oxide synthase (eNOS), platelet-derived growth factor (PDGF) receptor-ß (PDGFR-ß), a well-known marker of pericytes, phosphorylated PDGFR-ß at Tyr751, and ß-actin expressions, were examined using western blot analysis. PDGFR-ß, N-cadherin, and Tie-2 expression levels were also examined using immunohistochemistry. The concentrations of PDGF-BB in CSDH fluid samples were measured using enzyme-linked immunosorbent assay kits. NG2, N-cadherin, VE-cadherin, Tie-2, eNOS, PDGFR-ß, and eNOS expressions in CSDH outer membranes were confirmed in all cases. Furthermore, phosphorylated PDGFR-ß at Tyr751 was also detected. In addition, PDGFR-ß, N-cadherin, and Tie-2 expressions were localized to the endothelial cells of the vessels within CSDH outer membranes by immunohistochemistry. The concentration of PDGF-BB in CSDH fluids was significantly higher than that in cerebrospinal fluid. These findings indicate that PDGF activates pericytes in the microvessels of CSDH outer membranes and suggest that pericytes are crucial in CSDH angiogenesis through the PDGF/PDGFR-ß signaling pathway.


Asunto(s)
Hematoma Subdural Crónico , Humanos , Hematoma Subdural Crónico/cirugía , Pericitos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Becaplermina/metabolismo , Células Endoteliales/metabolismo , Microvasos/metabolismo , Cadherinas/metabolismo
14.
Eur J Pharmacol ; 961: 176151, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37914064

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT), a pleiotropic protein, promotes the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which is associated with the genesis and progression of pulmonary arterial hypertension (PAH). NAMPT is highly increased in PAH patient's plasma and highly relevant to PAH severity. The mRNA and protein levels of NAMPT are elevated in PAH animal models. However, the underlying molecular mechanisms how NAMPT mediated platelet-derived growth factor (PDGF)-induced PASMCs proliferation are still unclear. The present study aimed to address these issues. Primary cultured PASMCs were attained from male Sprague-Dawley (SD) rats. Western blotting, RT-PCR, ELISA, cell transfection, Cell Counting Kit-8 (CCK-8) and EdU incorporation assays were used in the experiments. We showed that PDGF upregulated NAMPT expression through the activation of signal transducers and activators of transcription 5 (STAT5), and elevated extracellular NAMPT further promoted the activation of NF-κB through Toll-like receptor 4 (TLR4), which ultimately upregulated polo-like kinase 4 (PLK4) expression leading to PASMCs proliferation. Knockdown of STAT5, NAMPT or PLK4, and inhibition of TLR4 or NF-κB suppressed PDGF-induced PASMCs proliferation. Our study suggests that NAMPT plays an essential role in PDGF-induced PASMCs proliferation via TLR4/NF-κB/PLK4 pathway, suggesting that targeting NAMPT might be valuable in ameliorating pulmonary arterial hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Ratas , Animales , Masculino , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Arteria Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Proliferación Celular , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Factor de Transcripción STAT5/efectos adversos , Factor de Transcripción STAT5/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
15.
Biomolecules ; 13(11)2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-38002312

RESUMEN

Background: The global epidemic status of diabetic retinopathy (DR) and its burden presents an ongoing challenge to health-care systems. It is of great interest to investigate potential prognostic biomarkers of DR. Such markers could aid in detecting early stages of DR, predicting DR progression and its response to therapeutics. Herein, we investigate the prognostic value of intravitreal concentrations of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) in a DR cohort. Materials and methods: Vitreous sample acquisition was conducted at King Abdullah University Hospital (KAUH) between December 2020 and June 2022. Samples were obtained from any patient scheduled to undergo a pars plana vitrectomy (PPV) for any indication. Included patients were categorized into a DR group or a corresponding non-diabetic (ND) control group. Demographics, clinicopathological variables, standardized laboratory tests results, and optical coherence tomography (OCT) data were obtained for each included individual. Intravitreal concentrations of VEGF and PDGF were assessed using commercial enzyme-linked immunosorbent assay (ELISA). Results: A total of 80 eyes from 80 patients (DR group: n = 42 and ND control group: n = 38) were included in the analysis. The vitreous VEGF levels were significantly higher in the DR group compared to the ND control group (DR group 5744.06 ± 761.5 pg/mL versus ND control group 817.94 ± 403.1 pg/mL, p = 0.0001). In addition, the vitreous PDGF levels were also significantly higher in the DR group than those in the ND control group (DR group 4031.51 ± 410.2 pg/mL versus ND control group 2691.46 ± 821.0 pg/mL, p = 0.001). Bassline differences between test groups and clinical factors impacting VEGF and PDGF concentrations were investigated as well. Multiple regression analysis indicated PDGF as the sole independent risk factor affecting best-corrected visual acuity (BCVA) at the last follow-up visit: the higher the PDGF vitreous levels, the worst the BCVA. Conclusions: Vitreous concentrations of VEGF and PDGF are correlated with DR severity and may exhibit a possible prognostic potential value in DR. Further clinical and experimental data are warranted to confirm the observed findings and to help incorporate them into daily practice.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/metabolismo
16.
Life Sci ; 333: 122143, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797686

RESUMEN

INTRODUCTION: The flavonoid-rich fraction of Rosa damascena (FRFRD) contains antioxidant and active compounds. Therefore, this study aimed to investigate the role of FRFRD, rich in quercetin and kaempferol, in liver fibrosis induced by CCl4. MATERIALS AND METHODS: The FRFRD fraction was separated and standardized by High-Performance Liquid Chromatography (HPLC) based on the levels of quercetin and kaempferol. Liver fibrosis was induced over CCl4 over 12 weeks in 30 male Wistar rats, and three concentrations of FRFRD were administered to them during the last four weeks. Subsequently, after evaluation of liver serum markers and fibrotic parameters, the relative expression of transforming growth factor-beta-1 (TGF-ß1), platelet-derived growth factor (PDGF), and lysyl oxidase homolog 2 (Loxl2) genes were assessed, along with the measurement of lysyl oxidase activity and oxidative markers. RESULTS: Fibrotic markers demonstrated progressive recovery of liver damage in the treated group compared to the non-treatment group (p < 0.01). These results were accompanied by a significant decrease in the expression of TGF-ß1, PDGF, and Loxl2 genes, as well as, a reduction in lysyl oxidase activity (p < 0.001). The antioxidant effects of the treatment were observed through a significant decrease in malondialdehyde (MDA) levels and an increase in catalase enzyme (CAT) and glutathione peroxidase (GPx) activity in the treatment group compared to the fibrotic group (p < 0.01). CONCLUSION: The flavonoid-rich fraction of Rosa damascena ameliorates liver damage by affecting collagen cross-linking and lowering oxidative and inflammatory levels.


Asunto(s)
Antioxidantes , Rosa , Masculino , Ratas , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Rosa/metabolismo , Quempferoles/farmacología , Quercetina/farmacología , Quercetina/metabolismo , Oxidantes/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Ratas Wistar , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo , Flavonoles/farmacología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Flavonoides/metabolismo , Colágeno/metabolismo , Modelos Animales , Tetracloruro de Carbono/farmacología
17.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537538

RESUMEN

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Asunto(s)
Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Vitreorretinopatía Proliferativa , Humanos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas Proto-Oncogénicas c-akt , Ligandos , Especies Reactivas de Oxígeno/metabolismo , Vitreorretinopatía Proliferativa/genética , Vitreorretinopatía Proliferativa/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Movimiento Celular
18.
Cell Biol Int ; 47(12): 1942-1949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615370

RESUMEN

Platelet-derived growth factor C (PDGF-C) is a member of PDGF/VEGF family, which is well-known for important functions in the vascular system. It is widely reported that PDGF-C is able to modulate cell proliferation. However, it is still not very clear about this cell modulating mechanism at the molecular level. In a screening of factors regulated by PDGF-C protein, we fished out a factor called block of proliferation 1 (BOP1), which is a pivotal regulator of ribosome biogenesis and cell proliferation. In this study, we investigated the regulation of BOP1 by PDGF-C and its role in modulating cell proliferation. We found that BOP1 was downregulated at both mRNA and protein levels in cells treated with PDGF-C-containing conditioned medium. On the other hand, BOP1 was upregulated in PDGF-C deficient mice. Furthermore, we confirmed that overexpression of BOP1 inhibited HEK293A cell proliferation, whereas knockdown of BOP1 promoted cell proliferation. The mitogenic effect of PDGF-C could be attenuated by downregulation of BOP1. Our results demonstrate a clear PDGF-C-BOP1 signaling that modulates cell proliferation.


Asunto(s)
Linfocinas , Factor de Crecimiento Derivado de Plaquetas , Animales , Ratones , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proliferación Celular , Linfocinas/genética , Linfocinas/metabolismo , Linfocinas/farmacología , Transducción de Señal
19.
J Vet Med Sci ; 85(10): 1057-1062, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37558425

RESUMEN

Feline meningiomas usually have benign biological behavior, while canine and human meningiomas are often classified as grade 2 or 3. Activation of the platelet-derived growth factor (PDGF) and its receptor signal pathway through PDGFß/Rß autocrine and paracrine is considered to play an important role in the tumor proliferation and malignant transformation of human meningiomas. However, there have been few studies about the expression of these molecules in canine meningiomas and no studies about their expression in feline meningiomas. We analyzed the PDGFα/Rα and PDGFß/Rß expression in canine and feline meningiomas by immunohistochemistry and western blotting. Immunohistochemically, most canine meningiomas showed the expression of PDGFα (42/44; 95.5%), PDGFRα (44/44; 100%) and PDGFRß (35/44; 79.5%), and a few showed the expression of PDGFß (8/44; 18.2%). In contrast, feline meningiomas were immunopositive for PDGFRα and PDGFRß in all cases (14/14; 100%), while no or a few cases expressed PDGFα (0/14; 0%) and PDGFß (2/14; 14.3%). Western blotting revealed specific bands for PDGFα, PDGFRα and PDGFRß, but not for PDGFß in a canine meningioma. In a feline meningioma, specific bands for PDGFRα and PDGFRß were detected, but not for PDGFα and PDGFß. These results suggested that canine meningiomas commonly express PDGFα/Rα, and thus autocrine or paracrine PDGFα/Rα signaling may be involved in their initiation and progression. Moreover, PDGF negativity may be related to benign biological behavior and a low histopathological grade in feline meningioma.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Neoplasias Meníngeas , Meningioma , Animales , Gatos , Perros , Humanos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Meningioma/veterinaria , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Enfermedades de los Perros/metabolismo , Neoplasias Meníngeas/veterinaria , Neoplasias Meníngeas/patología
20.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446376

RESUMEN

Dermal papilla cells (DPCs) cultured in vitro induce hair follicle formation. Using a hypoxic microenvironment to culture adipose mesenchymal stem cells (ADSCs) can promote hair follicle growth. However, the exact molecular mechanisms underlying this process remain unclear. In this study, ADSCs and DPCs from Arbas Cashmere goats were used. A hypoxic microenvironment promoted the proliferation of ADSCs and increased the pluripotency of ADSCs. The growth factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) were upregulated in ADSCs in the hypoxia-conditioned medium (Hypo-cm). Hypo-cm also enhanced the ability of DPCs to induce hair follicle formation. Inhibitors of the ERK1/2 signaling pathway caused the expressions of growth factors that increased in hypoxic microenvironments to decrease; moreover, hypoxia-inducible factor-1α (HIF-1α) increased the expression levels of VEGF, bFGF, and PDGF and inhibited the expression of bone morphogenic protein 7 (BMP7). In conclusion, these findings improve the theoretical basis for the development of gene therapy drugs for the treatment of alopecia areata and hair thinning.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sistema de Señalización de MAP Quinasas , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Hipoxia/metabolismo , Células Cultivadas , Transducción de Señal , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Folículo Piloso/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Medios de Cultivo Condicionados/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...