Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Commun ; 15(1): 4156, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755141

RESUMEN

Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency.


Asunto(s)
Herpesvirus Humano 4 , Histonas , Factor de Empalme Asociado a PTB , Activación Viral , Latencia del Virus , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Histonas/metabolismo , Activación Viral/genética , Latencia del Virus/genética , Factor de Empalme Asociado a PTB/metabolismo , Factor de Empalme Asociado a PTB/genética , Regulación Viral de la Expresión Génica , Linfocitos B/virología , Linfocitos B/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Sistemas CRISPR-Cas , Regiones Promotoras Genéticas/genética , Transactivadores/metabolismo , Transactivadores/genética , Genoma Viral
2.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38551131

RESUMEN

RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.


Asunto(s)
Drosophila , Neoplasias , Masculino , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme del ARN , ARN/metabolismo , Neoplasias/genética , Factor de Empalme Asociado a PTB/metabolismo , Mamíferos/genética
3.
Medicine (Baltimore) ; 102(45): e35837, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960731

RESUMEN

Splicing factor proline- and glutamine-rich (SFPQ) can interact with RNAs to regulate gene expression. The function of SFPQ in the immunotherapy of non-small cell lung cancer (NSCLC) is investigated in this study. H1299 and A549 cells were transfected with shSFPQ plasmid. Cell counting kit-8 (CCK-8) and cell clone formation were utilized to detect survival and proliferation. Programmed death-ligand 1 (PD-L1) and SFPQ were detected in NSCLC patients treated with anti-PD-L1 antibody. Dual-luciferase assays, RNA immunoblotting, RNA pull-down, and mRNA stability assay were applied to verify the regulation of PD-L1 with SFPQ. Human peripheral blood mononuclear cells (PBMC)-derived dendritic cells were loaded with irradiated A549 and H1299 cells, which were cultured with autologous CD8+T cells and tumor cells to perform in vitro tumor-specific cytotoxic T lymphocytes (CTL) cytotoxicity analysis. SFPQ silencing inhibited the survival and proliferation of H1299 and A549 cells with down-regulated PD-L1 expression. PD-L1 and SFPQ expression were markedly higher in anti-PD-L1 antibody treatment responders compared to non-responders, which showed a positive Pearson correlation (R = 0.76, P < .001). SFPQ up-regulated the relative mRNA and protein expression of PD-L1 by binding to the PD-L1 3'UTR to slow the decay of PD-L1 mRNA. SFPQ silencing promoted the killing effect of CTL on A549 and H1299 cells. SFPQ up-regulates PD-L1 expression by binding with PD-L1 3'UTR to slow the decay of PD-L1 mRNA, and SFPQ silencing promotes CTL-mediated cytotoxicity on NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Regiones no Traducidas 3' , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Glutamina , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Factores de Empalme de ARN/genética , Linfocitos T Citotóxicos/metabolismo , Factor de Empalme Asociado a PTB/genética , Factor de Empalme Asociado a PTB/metabolismo
4.
Environ Int ; 170: 107627, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36399942

RESUMEN

Benzo[a]pyrene (B[a]P) is a class I carcinogen and hazardous environmental pollutant with genetic toxicity. Understanding the molecular mechanisms underlying genetic deterioration and epigenetic alterations induced by environmental contaminants may contribute to the early detection and prevention of cancer. However, the role and regulatory mechanisms of circular RNAs (circRNAs) in the B[a]P-induced DNA damage response (DDR) have not been elucidated. In this study, human bronchial epithelial cell lines (16HBE and BEAS-2B) were exposed to various concentrations of B[a]P, and BALB/c mice were treated with B[a]P intranasally. B[a]P exposure was found to induce DNA damage and upregulate circular RNA hsa_circ_0057504 (circ_0057504) expression in vitro and in vivo. In addition, B[a]P upregulated TMEM194B mRNA and circ_0057504 expression through inhibition of DNA methyltransferase 3 alpha (DNMT3A) expression in vitro. Modulation (overexpression or knockdown) of circ_0057504 expression levels using a lentiviral system in human bronchial epithelial cells revealed that circ_0057504 promoted B[a]P-induced DNA damage. RNA pull-down and western blot assays showed that circ_0057504 interacted with non-POU domain-containing octamer-binding (NONO) and splicing factor proline and glutamine rich (SFPQ) proteins and regulated formation of the NONO-SFPQ protein complex. Thus, our findings indicate that circ_0057504 acts as a novel regulator of DNA damage in human bronchial epithelial cells exposed to B[a]P. The current study reveals novel insights into the role of circRNAs in the regulation of genetic damage, and describes the effect and regulatory mechanisms of circ_0057504 on B[a]P genotoxicity.


Asunto(s)
Benzo(a)pireno , Daño del ADN , ADN Metiltransferasa 3A , Proteínas de Unión al ADN , Neoplasias Pulmonares , Factor de Empalme Asociado a PTB , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Benzo(a)pireno/toxicidad , Bronquios/efectos de los fármacos , Bronquios/metabolismo , ADN Metiltransferasa 3A/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Factor de Empalme Asociado a PTB/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Ratones Endogámicos BALB C
5.
Biochemistry ; 61(17): 1723-1734, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35998361

RESUMEN

Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Factor de Empalme Asociado a PTB/genética , Factor de Empalme Asociado a PTB/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886974

RESUMEN

NONO and SFPQ are involved in multiple nuclear processes (e.g., pre-mRNA splicing, DNA repair, and transcriptional regulation). These proteins, along with NEAT1, enable paraspeckle formation, thus promoting multiple myeloma cell survival. In this paper, we investigate NONO and SFPQ dimer stability, highlighting the hetero- and homodimer structural differences, and model their interactions with RNA, simulating their binding to a polyG probe mimicking NEAT1guanine-rich regions. We demonstrated in silico that NONO::SFPQ heterodimerization is a more favorable process than homodimer formation. We also show that NONO and SFPQ RRM2 subunits are primarily required for protein-protein interactions with the other DBHS protomer. Simulation of RNA binding to NONO and SFPQ, beside validating RRM1 RNP signature importance, highlighted the role of ß2 and ß4 strand residues for RNA specific recognition. Moreover, we demonstrated the role of the NOPS region and other protomer's RRM2 ß2/ß3 loop in strengthening the interaction with RNA. Our results, having deepened RNA and DBHS dimer interactions, could contribute to the design of small molecules to modulate the activity of these proteins. RNA-mimetics, able to selectively bind to NONO and/or SFPQ RNA-recognition site, could impair paraspeckle formation, thus representing a first step towards the discovery of drugs for multiple myeloma treatment.


Asunto(s)
Proteínas de Unión al ADN , Mieloma Múltiple , Factor de Empalme Asociado a PTB , ARN , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Subunidades de Proteína/metabolismo , ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
Viruses ; 14(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216000

RESUMEN

After integration to the human genome as a provirus, human T-cell leukemia virus type 1 (HTLV-1) utilizes host T cell gene expression machinery for viral replication. The viral RNA-binding protein, Rex, is known to transport unspliced/incompletely spliced viral mRNAs encoding viral structural proteins out of the nucleus to enhance virus particle formation. However, the detailed mechanism of how Rex avoids extra splicing of unspliced/incompletely spliced viral mRNAs and stabilizes them for effective translation is still unclear. To elucidate the underlying molecular mechanism of Rex function, we comprehensively analyzed the changes in gene expression and splicing patterns in Rex-overexpressing T cells. In addition, we identified 81 human proteins interacting with Rex, involved in transcription, splicing, translation, and mRNA quality control. In particular, Rex interacts with NONO and SFPQ, which play important roles in the regulation of transcription and splicing. Accordingly, expression profiles and splicing patterns of a wide variety of genes are significantly changed in Rex-expressing T cells. Especially, the level of vPD-L1 mRNA that lacks the part of exon 4, thus encodes soluble PD-L1 was significantly increased in Rex-expressing cells. Overall, by integrated analysis of these three datasets, we showed for the first time that Rex intervenes the host gene expression machinery throughout the pathway, probably to escort viral unstable mRNAs from transcription (start) to translation (end). Upon exerting its function, Rex may alter the expression level and splicing patterns of various genes, thus influencing the phenotype of the host cell.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Productos del Gen rex/metabolismo , Infecciones por HTLV-I/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Proteínas de Unión al ARN/metabolismo , Replicación Viral/genética , Antígeno B7-H1/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Regulación Viral de la Expresión Génica , Humanos , Factor de Empalme Asociado a PTB/metabolismo , Empalme del ARN , ARN Mensajero , Proteínas de Unión al ARN/genética
8.
Invest Ophthalmol Vis Sci ; 62(14): 18, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787639

RESUMEN

Purpose: Retinal pigment epithelium (RPE) cell proliferation is precisely regulated to maintain retinal homoeostasis. Microphthalmia-associated transcription factor (MITF), a critical transcription factor in RPE cells, has two alternatively spliced isoforms: (+)MITF and (-)MITF. Previous work has shown that (-)MITF but not (+)MITF inhibits RPE cell proliferation. This study aims to investigate the role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in regulating MITF splicing and hence proliferation of RPE cells. Methods: Mouse RPE, primary cultured mouse RPE cells, and different proliferative human embryonic stem cell (hESC)-RPE cells were used to evaluate the expression of (+)MITF, (-)MITF, and NEAT1 by reverse-transcription PCR (RT-PCR) or quantitative RT-PCR. NEAT1 was knocked down using specific small interfering RNAs (siRNAs). Splicing factor proline- and glutamine-rich (SFPQ) was overexpressed with the use of lentivirus infection. Cell proliferation was analyzed by cell number counting and Ki67 immunostaining. RNA immunoprecipitation (RIP) was used to analyze the co-binding between the SFPQ and MITF or NEAT1. Results: NEAT1 was highly expressed in proliferative RPE cells, which had low expression of (-)MITF. Knockdown of NEAT1 in RPE cells switched the MITF splicing pattern to produce higher levels of (-)MITF and inhibited cell proliferation. Mechanistically, NEAT1 recruited SFPQ to bind directly with MITF mRNA to regulate its alternative splicing. Overexpression of SFPQ in ARPE-19 cells enhanced the binding enrichment of SFPQ to MITF and increased the splicing efficiency of (+)MITF. The binding affinity between SFPQ and MITF was decreased after NEAT1 knockdown. Conclusions: NEAT1 acts as a scaffold to recruit SFPQ to MITF mRNA and promote its binding affinity, which plays an important role in regulating the alternative splicing of MITF and RPE cell proliferation.


Asunto(s)
Empalme Alternativo/genética , Proliferación Celular/fisiología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Empalme Asociado a PTB/metabolismo , ARN Largo no Codificante/fisiología , ARN Mensajero/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Células Madre Embrionarias Humanas , Humanos , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/citología
9.
Biochem Biophys Res Commun ; 562: 139-145, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34052659

RESUMEN

We recently isolated a novel co-activator of peroxisome proliferator-activated receptor γ, helicase with zinc finger 2 (HELZ2). HELZ2 null mice were resistant to diet-induced obesity and NAFFL/NASH, and HELZ2 was phosphorylated at tyrosine residues. In order to find a factor related to HELZ2, we analyzed products co-immunoprecipitated with phosphorylated HELZ2 by mass spectrometry analyses. We identified proline- and glutamine-rich (SFPQ) as a protein associating with tyrosine-phosphorylated HELZ2. The knockdown of SFPQ in 3T3-L1 cells downregulated mRNA levels of transcription factors including Krox20, Cebpß, and Cebpδ: key factors for early-stage adipocyte differentiation. In addition, knockdown of SFPQ inhibited 3T3-L1 cell differentiation to mature adipocytes. These findings demonstrated that SFPQ associating with HELZ2 is an important novel transcriptional regulator of adipocyte differentiation.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , PPAR gamma/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Animales , Regulación de la Expresión Génica , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Ratones , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo
10.
Cancer Res ; 81(13): 3495-3508, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975881

RESUMEN

RNA-binding protein PSF functions as an epigenetic modifier by interacting with long noncoding RNAs and the corepressor complex. PSF also promotes RNA splicing events to enhance oncogenic signals. In this study, we conducted an in vitro chemical array screen and identified multiple small molecules that interact with PSF. Several molecules inhibited RNA binding by PSF and decreased prostate cancer cell viability. Among these molecules and its derivatives was a promising molecule, No. 10-3 [7,8-dihydroxy-4-(4-methoxyphenyl)chromen-2-one], that was the most effective at blocking PSF RNA-binding ability and suppressing treatment-resistant prostate and breast cancer cell proliferation. Exposure to No. 10-3 inhibited PSF target gene expression at the mRNA level. Treatment with No. 10-3 reversed epigenetically repressed PSF downstream targets, such as cell-cycle inhibitors, at the transcriptional level. Chromatin immunoprecipitation sequencing in prostate cancer cells revealed that No. 10-3 enhances histone acetylation to induce expression of apoptosis as well as cell-cycle inhibitors. Furthermore, No. 10-3 exhibited antitumor efficacy in a hormone therapy-resistant prostate cancer xenograft mouse model, suppressing treatment-resistant tumor growth. Taken together, this study highlights the feasibility of targeting PSF-mediated epigenetic and RNA-splicing activities for the treatment of aggressive cancers. SIGNIFICANCE: This study identifies small molecules that target PSF-RNA interactions and suppress hormone therapy-refractory cancer growth, suggesting the potential of targeting PSF-mediated gene regulation for cancer treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Epigénesis Genética , Factor de Empalme Asociado a PTB/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Empalme Asociado a PTB/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Largo no Codificante/genética , Transcripción Genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Mol Med (Berl) ; 99(7): 967-980, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33770188

RESUMEN

Reactive oxygen species (ROS), a by-product of oxygen metabolism mainly originating from mitochondria, participate in many pathological processes related to ophthalmopathy. Excessive production of ROS leads to oxidative stress, which influences the permeability, proliferation, migration, and tube formation of human retinal microcapillary endothelial cells (HRMECs). The molecular mechanisms underlying the effects of ROS are not clear. In Vldlr-/- mice, we used fundus fluorescein angiography and retinal flat mount staining to observe the effect of polypyrimidine tract-binding protein-associated splicing factor (PSF) on pathological retinal neovascularization in vivo. Additionally, in human retinal microvascular endothelial cells treated with 4-HNE, cell viability, tube formation, wound healing, and Transwell assays were performed to study the effect of PSF on the proliferation, migration, and tube formation of retinal vascular endothelial cells in vitro. Moreover, reactive oxygen species assay, real-time PCR, and Western blot were included to analyze the potential mechanism of PSF in the above series of effects. PSF ameliorated intraretinal neovascularization (IRNV) in vivo in Vldlr-/- mice. Under 4-hydroxynonenal (4-HNE) conditions in vitro, PSF reprogrammed mitochondrial bioenergetic and glycolytic profiles. It also reduced ROS levels and inhibited 4-HNE-induced angiogenesis, which involves the proliferation, migration, and tube formation of HRMECs. These results suggest that PSF participates in the regulation of HRMECs proliferation and migration during the development of pathological angiogenesis. We demonstrated that PSF enhanced Nrf2 activation and heme oxygenase-1 (HO-1) expression via extracellular signal-regulated kinase (ERK) and Akt signaling in HRMECs, which subsequently resulted in intracellular ROS scavenging. PSF restored endoplasmic reticulum (ER) redox homeostasis, which was indicated by an increase in protein disulfide isomerase (PDI) and Ero-1α and a reduction in GRP78 and C/EBP homologous protein (CHOP). PSF also attenuated ER stress via regulation of the protein kinase R (PKR)-like endoplasmic reticulum kinase PERK/eukaryotic translation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) pathway in 4-HNE-treated HRMECs. Our research shows that PSF may be a potential antioxidant that regulates pathological angiogenesis through ERK-AKT/Nrf2/HO-1 and PERK/eIF2α/ATF4 signal regulation. KEY MESSAGES: Reactive oxygen species (ROS) mainly originating from mitochondria is a by-product of oxygen metabolism in the body and participates in the pathological process related to multiple blindness-related ophthalmopathy. Moreover , excessive production of ROS will lead to oxidative stress. Consequently, oxidative stress influences the permeability, proliferation, migration, and tube formation of human retinal microcapillary endothelial cells (HRMECs). The molecular mechanisms underlying the effects of ROS remain unclear. Here, we reveal that Polypyrimidine tract-binding protein-associated splicing factor (PSF) ameliorates intraretinal neovascularization (IRNV) in vivo in Vldlr-/- mice. Furthermore, under 4-HNE conditions in vitro, PSF reprograms mitochondrial bioenergetic and glycolytic profiles, reduces ROS levels, and inhibits 4-HNE-induced angiogenesis, which involves the proliferation, migration, and tube formation of HRMECs, suggesting that it participates in regulating the proliferation and migration of HRMECs during the development of pathological angiogenesis. Furthermore, PSF enhances Nrf2 activation and HO-1 expression through ERK and AKT signaling in HRMECs, resulting in intracellular ROS scavenging. PSF restores endoplasmic reticulum (ER) redox homeostasis, as indicated by an increase in PDI and Ero-1α and a reduction in GRP78 and CHOP. PSF also attenuates ER stress by regulating the PERK/eIF2α/ATF4 pathway in 4-HNE-treated HRMECs.


Asunto(s)
Factor de Empalme Asociado a PTB/metabolismo , Neovascularización Retiniana/metabolismo , Factor de Transcripción Activador 4/metabolismo , Aldehídos/farmacología , Animales , Células Cultivadas , Estrés del Retículo Endoplásmico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/citología , Mitocondrias/metabolismo , Factor de Empalme Asociado a PTB/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de LDL/genética , Retina/citología , Retina/metabolismo , Retina/patología , Neovascularización Retiniana/genética , eIF-2 Quinasa/metabolismo
12.
Cell Commun Signal ; 19(1): 14, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573690

RESUMEN

BACKGROUND: Abnormal neovascularization is the most common cause of blindness, and hypoxia alters tissue metabolism, function, and morphology. HIF-1α, the transcriptional activator of VEGF, has intricate mechanisms of nuclear translocation and activation, but its signal termination mechanisms remain unclear. METHODS: We investigated the role of polypyrimidine tract-binding protein-associated splicing factor (PSF) in cellular energy production, migration, and proliferation by targeting HIF-1α in vivo and in vitro PSF plasmids were transfected with liposome 2000 transfection reagent. Young C57/BL6J mice were kept in a hyperoxia environment, followed by indoor air, resulting in oxygen-induced retinopathy. Oxygen-induced retinopathy (OIR) animals were randomly divided into three groups: OIR group, OIR + vector group (OIR cubs treated with rAAV vector) and OIR + PSF group (OIR cubs treated with rAAV-PSF). Age-matched C57/BL6J mice were used as controls and exposed to constant normoxic conditions. The animals were executed and their pupils were subjected to subsequent experiments. The metabolic spectrum was analyzed by Seahorse XFe96 flux analyzer, and OCR and extracellular acidification rate were quantified at the same time. RESULTS: PSF ameliorated retinal neovascularization and corrected abnormal VEGF expression in mice with oxygen-induced retinopathy and reduced intra-retinal neovascularization in Vldlr - / - mice. PSF reprogrammed mitochondrial bioenergetics and inhibited the transition of endothelial cells after hypoxia, suggesting its involvement in pathological angiogenesis.Ectopic PSF expression inhibited hypoxia-induced HIF-1α activation in the nucleus by recruiting Hakai to the PSF/HIF-1α complex, causing HIF-1α inhibition. PSF knockdown increased hypoxia-stimulated HIF-1α reactions. These hypoxia-dependent processes may play a vital role in cell metabolism, migration, and proliferation. Thus, PSF is a potential treatment target in neovascularization-associated ophthalmopathy. CONCLUSION: This is the first study showing that PSF inhibits HIF-1α via recruitment of Hakai, modulates mitochondrial oxidation and glycolysis, and downregulates VEGF expression under hypoxia. We propose a new HIF-1 α/Hakai regulatory mechanism that may play a vital role in the pathogenesis of neovascularization in ophthalmopathy. PSF-Hakai-HIF-1α signaling pathway under hypoxia condition. Schematic diagram showing that the PSF-Hakai-HIF-1α signaling pathway. Under hypoxia condition, PSF-Hakai complex regulate HIF-1α signaling, thus inhibiting downstream target gene VEGF, cell metabolism and angiogenesis eventually. Video Abstract: Detailed information of Materials and Methods.


Asunto(s)
Hipoxia/metabolismo , Mitocondrias/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Enfermedades de la Retina/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Hipoxia/complicaciones , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Empalme Asociado a PTB/genética , Receptores de LDL/genética , Retina/metabolismo , Enfermedades de la Retina/etiología , Enfermedades de la Retina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
J Cell Sci ; 134(4)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33495278

RESUMEN

The expanded GGGGCC repeat mutation in the C9orf72 gene is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion is transcribed to sense and antisense RNA, which form RNA foci and bind cellular proteins. This mechanism of action is considered cytotoxic. Translation of the expanded RNA transcripts also leads to the accumulation of toxic dipeptide repeat proteins (DPRs). The RNA-binding protein splicing factor proline and glutamine rich (SFPQ), which is being increasingly associated with ALS and FTD pathology, binds to sense RNA foci. Here, we show that SFPQ plays an important role in the C9orf72 mutation. Overexpression of SFPQ resulted in higher numbers of both sense and antisense RNA foci and DPRs in transfected human embryonic kidney (HEK) cells. Conversely, reduced SPFQ levels resulted in lower numbers of RNA foci and DPRs in both transfected HEK cells and C9orf72 mutation-positive patient-derived fibroblasts and lymphoblasts. Therefore, we have revealed a role of SFPQ in regulating the C9orf72 mutation that has implications for understanding and developing novel therapeutic targets for ALS and FTD.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína C9orf72 , Expansión de las Repeticiones de ADN , Factor de Empalme Asociado a PTB/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Dipéptidos , Demencia Frontotemporal/genética , Humanos , Mutación/genética , ARN
14.
Elife ; 102021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33476259

RESUMEN

Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu-independent circRNA production.


Asunto(s)
Intrones , Factor de Empalme Asociado a PTB/genética , Empalme del ARN , ARN Circular/metabolismo , Animales , Células HEK293 , Células Hep G2 , Humanos , Ratones , Factor de Empalme Asociado a PTB/metabolismo
15.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33284322

RESUMEN

Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation. However, the mechanism that enables long-distance transport of RNA granules is not yet understood. Here, we demonstrate that a complex containing RNA and the RNA-binding protein (RBP) SFPQ interacts selectively with a tetrameric kinesin containing the adaptor KLC1 and the motor KIF5A. We show that the binding of SFPQ to the KIF5A/KLC1 motor complex is required for axon survival and is impacted by KIF5A mutations that cause Charcot-Marie Tooth (CMT) disease. Moreover, therapeutic approaches that bypass the need for local translation of SFPQ-bound proteins prevent axon degeneration in CMT models. Collectively, these observations indicate that KIF5A-mediated SFPQ-RNA granule transport may be a key function disrupted in KIF5A-linked neurologic diseases and that replacing axonally translated proteins serves as a therapeutic approach to axonal degenerative disorders.


Asunto(s)
Transporte Axonal , Axones/metabolismo , Cinesinas/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , ARN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Gránulos Citoplasmáticos/metabolismo , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos , Mitocondrias/metabolismo , Mutación/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
16.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998269

RESUMEN

RNA-binding proteins (RBPs) are a class of proteins known for their diverse roles in RNA biogenesis, from regulating transcriptional processes in the nucleus to facilitating translation in the cytoplasm. With higher demand for RNA metabolism in the nervous system, RBP misregulation has been linked to a wide range of neurological and neurodegenerative diseases. One of the emerging RBPs implicated in neuronal function and neurodegeneration is splicing factor proline- and glutamine-rich (SFPQ). SFPQ is a ubiquitous and abundant RBP that plays multiple regulatory roles in the nucleus such as paraspeckle formation, DNA damage repair, and various transcriptional regulation processes. An increasing number of studies have demonstrated the nuclear and also cytoplasmic roles of SFPQ in neurons, particularly in post-transcriptional regulation and RNA granule formation. Not surprisingly, the misregulation of SFPQ has been linked to pathological features shown by other neurodegenerative disease-associated RBPs such as aberrant RNA splicing, cytoplasmic mislocalization, and aggregation. In this review, we discuss recent findings on the roles of SFPQ with a particular focus on those in neuronal development and homeostasis as well as its implications in neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Factor de Empalme Asociado a PTB/genética , Empalme del ARN , ARN Mensajero/genética , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Modelos Moleculares , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Factor de Empalme Asociado a PTB/química , Factor de Empalme Asociado a PTB/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo
17.
Cell Rep ; 32(12): 108184, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966782

RESUMEN

Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación/genética , Factor de Empalme Asociado a PTB/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Mutaciones Letales Sintéticas/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Neoplasias Colorrectales/patología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Femenino , Humanos , Hidroxiurea/farmacología , Ratones Desnudos , Recombinasa Rad51/metabolismo , Reproducibilidad de los Resultados , Fase S/efectos de los fármacos , Fase S/genética , Estrés Fisiológico/efectos de los fármacos , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
18.
Brain ; 143(8): 2398-2405, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32770214

RESUMEN

Fused in sarcoma (FUS) is genetically and clinicopathologically linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). We have previously reported that intranuclear interactions of FUS and splicing factor, proline- and glutamine-rich (SFPQ) contribute to neuronal homeostasis. Disruption of the FUS-SFPQ interaction leads to an increase in the ratio of 4-repeat tau (4R-tau)/3-repeat tau (3R-tau), which manifests in FTLD-like phenotypes in mice. Here, we examined FUS-SFPQ interactions in 142 autopsied individuals with FUS-related ALS/FTLD (ALS/FTLD-FUS), TDP-43-related ALS/FTLD (ALS/FTLD-TDP), progressive supranuclear palsy, corticobasal degeneration, Alzheimer's disease, or Pick's disease as well as controls. Immunofluorescent imaging showed impaired intranuclear co-localization of FUS and SFPQ in neurons of ALS/FTLD-FUS, ALS/FTLD-TDP, progressive supranuclear palsy and corticobasal degeneration cases, but not in Alzheimer's disease or Pick's disease cases. Immunoprecipitation analyses of FUS and SFPQ revealed reduced interactions between the two proteins in ALS/FTLD-TDP and progressive supranuclear palsy cases, but not in those with Alzheimer disease. Furthermore, the ratio of 4R/3R-tau was elevated in cases with ALS/FTLD-TDP and progressive supranuclear palsy, but was largely unaffected in cases with Alzheimer disease. We concluded that impaired interactions between intranuclear FUS and SFPQ and the subsequent increase in the ratio of 4R/3R-tau constitute a common pathogenesis pathway in FTLD spectrum diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Neuronas/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteinopatías TDP-43/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/patología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Degeneración Lobar Frontotemporal/patología , Humanos , Masculino , Persona de Mediana Edad , Neuronas/patología , Proteinopatías TDP-43/patología , Proteínas tau/metabolismo
19.
Oncogene ; 39(34): 5616-5632, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661324

RESUMEN

Increasing evidence indicates that long non-coding RNAs (lncRNAs) play vital roles in the tumorigenesis and progression of cancers. However, the functions and regulatory mechanisms of lncRNAs in nasopharyngeal carcinoma (NPC) are still largely unknown. Our previous lncRNA expression profiles identified that LINC01503 was overexpressed in NPC. Here, we verified that LINC01503 was highly expressed in NPC and correlated with poor prognosis. LINC01503 promoted NPC cell proliferation, migration, and invasion in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, LINC01503 recruited splicing factor proline-and glutamine-rich (SFPQ) to activate Fos like 1 (FOSL1) transcription, and ectopic expression of FOSL1 reversed the suppressive effect of LINC01503 knockdown on NPC progression. Moreover, androgen receptor (AR)-mediated transcription activation was responsible for the overexpression of LINC01503, and AR ligand-dependent cell growth, migration, and invasion in NPC cells. Taken together, our findings reveal that AR-induced LINC01503 can promote NPC progression through the SFPQ-FOSL1 axis, which represents a novel prognostic biomarker and therapeutic target for NPC patients.


Asunto(s)
Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Factor de Empalme Asociado a PTB/genética , Proteínas Proto-Oncogénicas c-fos/genética , ARN Largo no Codificante/genética , Receptores Androgénicos/genética , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/terapia , Factor de Empalme Asociado a PTB/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Interferencia de ARN , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Acta Neuropathol ; 140(3): 317-339, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577828

RESUMEN

Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer's disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients' brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Factor de Empalme Asociado a PTB/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo/fisiología , Humanos , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...