Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cancer Sci ; 112(10): 4176-4186, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34327778

RESUMEN

As a POU homeodomain transcription factor, POU4F2 has been implicated in regulating tumorigenic processes in various cancers. However, the role of POU4F2 in colorectal cancer (CRC) remains unclear. Here, we revealed that POU4F2 functions as a tumor promotor in CRC. Bioinformatics analysis in specimens from CRC patients and expression analysis in CRC cell lines showed that POU4F2 was upregulated at the mRNA and protein levels in CRC. Depletion of POU4F2 suppressed the metastatic phenotypes of CRC cells, including cell migration, invasion, and the expression of epithelial-mesenchymal transition (EMT) markers. Moreover, depletion of POU4F2 decreased the number of lung metastatic nodes in nude mice. Mechanistically, POU4F2 positively regulated the Hedgehog signaling pathway, as inferred from the downregulation of the expression of sonic Hedgehog homolog, patched 1, Smoothened, and GLI family zinc finger 1 in vitro and vivo following silencing of POU4F2. Furthermore, the SMO agonist SAG reversed the effects of POU4F2 knockdown in CRC. Functionally, POU4F2 contributed to the Hedgehog signaling-regulated activation of the EMT process and promotion of CRC cell migration and invasion. Collectively, these findings elucidated the role of POU4F2 as a tumor promotor in CRC through the regulation of Hedgehog signaling-mediated EMT and suggested that POU4F2 suppression might be a promising therapeutic target in inhibiting CRC metastasis.


Asunto(s)
Movimiento Celular , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Proteínas Hedgehog/metabolismo , Invasividad Neoplásica , Factor de Transcripción Brn-3B/fisiología , Animales , Línea Celular Tumoral , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/patología , Ciclohexilaminas/farmacología , Regulación hacia Abajo , Silenciador del Gen , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Receptor Patched-1/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Tiofenos/farmacología , Factor de Transcripción Brn-3B/antagonistas & inhibidores , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Regulación hacia Arriba , Dedos de Zinc
2.
Cell Death Dis ; 12(3): 267, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712567

RESUMEN

Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3ß, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Metabolismo Energético , Síndrome Metabólico/metabolismo , Factor de Transcripción Brn-3B/metabolismo , Animales , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Regulación de la Expresión Génica , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Síndrome Metabólico/fisiopatología , Pronóstico , Transducción de Señal , Factor de Transcripción Brn-3B/genética
3.
Nat Commun ; 12(1): 1465, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674582

RESUMEN

Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Transcriptoma , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Mutación con Pérdida de Función , Ratones , ARN Citoplasmático Pequeño , Análisis de Secuencia , Células Madre , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cell Mol Life Sci ; 78(3): 889-907, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32965515

RESUMEN

The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.


Asunto(s)
Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/ultraestructura , Opsinas de Bastones/genética , Canales Catiónicos TRPC/metabolismo , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Fosfolipasas de Tipo C/metabolismo , Vías Visuales/fisiología
5.
J Neurophysiol ; 124(5): 1530-1549, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997561

RESUMEN

A variety of visual cues can trigger defensive reactions in mice and other species. In mice, looming stimuli that mimic an approaching aerial predator elicit flight or freezing reactions, while sweeping stimuli that mimic an aerial predator flying parallel to the ground typically elicit freezing. The retinal ganglion cell (RGC) types involved in these circuits are largely unknown. We previously discovered that loss of RGC subpopulations in Brn3b knockout mice results in distinct visual response deficits. Here, we report that retinal or global loss of Brn3b selectively ablates the fleeing response to looming stimuli while leaving the freeze response intact. In contrast, freezing responses to sweeping stimuli are significantly affected. Genetic manipulations removing three RGC subpopulations (Brn3a+ betta RGCs, Opn4+Brn3b+, and Brn3c+Brn3b+ RGCs) result in milder phenocopies of Brn3b knockout response deficits. These findings show that flight and freezing responses to distinct visual cues are mediated by circuits that can already be separated at the level of the retina, potentially by enlisting dedicated RGC types.NEW & NOTEWORTHY Flight and freezing response choices evoked by visual stimuli are controlled by brain stem and thalamic circuits. Genetically modified mice with loss of specific retinal ganglion cell (RGC) subpopulations have altered flight versus freezing choices in response to some but not other visual stimuli. This finding suggests that "threatening" visual stimuli may be computed already at the level of the retina and communicated via dedicated pathways (RGCs) to the brain.


Asunto(s)
Reacción de Prevención/fisiología , Células Ganglionares de la Retina/fisiología , Percepción Visual/fisiología , Animales , Conducta Animal , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/fisiología
6.
Dev Dyn ; 249(12): 1514-1528, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32741043

RESUMEN

BACKGROUND: During development, all retinal cell types arise from retinal progenitor cells (RPCs) in a step-wise fashion. Atoh7 and Pou4f2 mark, and function in, two phases of retinal ganglion cell (RGC) genesis; Atoh7 functions in a subpopulation of RPCs to render them competent for the RGC fate, whereas Pou4f2 participates in RGC fate specification and RGC differentiation. Despite extensive research on their roles, the properties of the two phases represented by these two factors have not been well studied, likely due to the retinal cellular heterogeneity. RESULTS: In this report, we describe two novel knock-in mouse alleles, Atoh7zsGreenCreERT2 and Pou4f2FlagtdTomato , which labeled retinal cells in the two phases of RGC development by fluorescent proteins. Also, the Atoh7zsGreenCreERT2 allele allowed for indirect labeling of RGCs and other cell types upon tamoxifen induction in a dose-dependent manner. Further, these alleles could be used to purify retinal cells in the different phases by fluorescence assisted cell sorting (FACS). Single cell RNA-seq analysis of purified cells from Atoh7zsGreenCreERT2 retinas further validated that this allele labeled both transitional/competent RPCs and their progenies including RGCs. CONCLUSIONS: Thus, these two alleles are very useful tools for studying the molecular and genetic mechanisms underlying RGC formation.


Asunto(s)
Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Factor de Transcripción Brn-3B/metabolismo
7.
Ophthalmic Genet ; 41(5): 427-431, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32597291

RESUMEN

BACKGROUND: Normal-tension glaucoma (NTG) that occurs despite normal intraocular pressure has genetic predisposition. Since retinal ganglion cells (RGCs) are a key node in pathogenesis of glaucoma, neurodegeneration of RGCs is thought to be the main cause increasing the risk of NTG development. Here, we aimed to investigate the association of polymorphisms in RGC development genes with NTG development. MATERIALS AND METHODS: We performed a case-control association study of 435 patients with NTG and 419 normal controls. We genotyped four single nucleotide polymorphisms (SNPs) in genes responsible for RGC development, namely POU4F2 (rs13152799 and rs1504360), POU4F1 (rs9601092), and ISL1 (rs2288468), by either real-time PCR or PCR-RFLP, and evaluated its association with the risk of NTG development. RESULTS: No significant association was observed between the candidate SNPs and NTG development. CONCLUSIONS: To the best of our knowledge, this is the first report exploring the association between genes regulating RGC development and NTG susceptibility. Our data could provide a reference for further researches that focus on finding additional potential SNPs of POU4F2, POU4F1, ISL1 or other RGC development genes for NTG.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas con Homeodominio LIM/genética , Glaucoma de Baja Tensión/patología , Polimorfismo de Nucleótido Simple , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3B/genética , Factores de Transcripción/genética , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Glaucoma de Baja Tensión/epidemiología , Glaucoma de Baja Tensión/genética , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Factores de Riesgo
8.
Nature ; 577(7790): 392-398, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915380

RESUMEN

More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments1-4. It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice. Here we show that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors that become restricted to select subtypes as development proceeds. Single-cell transcriptomic analyses of sensory neurons from mutant mice lacking transcription factors suggest that these broad-to-restricted transcription factors coordinate subtype-specific gene expression programs in subtypes in which their expression is maintained. We also show that neuronal targets are involved in this process; disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of transcription factor expression. Our findings support a model in which cues that emanate from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes by modulating the selection of subtype-restricted transcription factors.


Asunto(s)
Neurogénesis , Neuronas/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Factor de Crecimiento Nervioso/metabolismo , Neuronas/citología , ARN/análisis , ARN/genética , Análisis de la Célula Individual , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Factor de Transcripción Brn-3C/genética , Factor de Transcripción Brn-3C/metabolismo
9.
Stem Cells Dev ; 28(20): 1365-1375, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31580778

RESUMEN

Glaucoma is characterized by retinal ganglion cell (RGC) degeneration and is the second leading cause of blindness worldwide. However, current treatments such as eye drop or surgery have limitations and do not target the loss of RGC. Regenerative therapy using embryonic stem cells (ESCs) holds a promising option, but ethical concern hinders clinical applications on human subjects. In this study, we employed spermatogonial stem cells (SSCs) as an alternative source of ESCs for cell-based regenerative therapy in mouse glaucoma model. We generated functional RGCs from SSCs with a two-step protocol without applying viral transfection or chemical induction. SSCs were first dedifferentiated to embryonic stem-like cells (SSC-ESCs) that resemble ESCs in morphology, gene expression signatures, and stem cell properties. The SSC-ESCs then differentiated toward retinal lineages. We showed SSC-ESC-derived retinal cells expressed RGC-specific marker Brn3b and functioned as bona fide RGCs. To allow in vivo RGC tracing, Brn3b-EGFP reporter SSC-ESCs were generated and the derived RGCs were subsequently transplanted into the retina of glaucoma mouse models by intravitreal injection. We demonstrated that the transplanted RGCs could survive in host retina for at least 10 days after transplantation. SSC-ESC-derived RGCs can thus potentially be a novel alternative to replace the damaged RGCs in glaucomatous retina.


Asunto(s)
Células Madre Germinales Adultas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Glaucoma/terapia , Células Ganglionares de la Retina/trasplante , Células Madre Germinales Adultas/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica , Genes Reporteros , Glaucoma/inducido químicamente , Glaucoma/genética , Glaucoma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , N-Metilaspartato/administración & dosificación , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Cultivo Primario de Células , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Testículo/citología , Testículo/metabolismo , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo
10.
Cell Death Dis ; 10(8): 621, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413277

RESUMEN

Adult hearts respond to increased workload such as prolonged stress or injury, by undergoing hypertrophic growth. During this process, the early adaptive responses are important for maintaining cardiac output whereas at later stages, pathological responses such as cardiomyocyte apoptosis and fibrosis cause adverse remodelling, that can progress to heart failure. Yet the factors that control transition from adaptive responses to pathological remodelling in the heart are not well understood. Here we describe the POU4F2/Brn-3b transcription factor (TF) as a novel regulator of adaptive hypertrophic responses in adult hearts since Brn-3b mRNA and protein are increased in angiotensin-II (AngII) treated mouse hearts with concomitant hypertrophic changes [increased heart weight:body weight (HW:BW) ratio]. These effects occur specifically in cardiomyocytes because Brn-3b expression is increased in AngII-treated primary cultures of neonatal rat ventricular myocytes (NRVM) or foetal heart-derived H9c2 cells, which undergo characteristic sarcomeric re-organisation seen in hypertrophic myocytes and express hypertrophic markers, ANP/ßMHC. The Brn-3b promoter is activated by known hypertrophic signalling pathways e.g. p42/p44 mitogen-activated protein kinase (MAPK/ERK1/2) or calcineurin (via NFAT). Brn-3b target genes, e.g. cyclin D1, GLUT4 and Bax, are increased at different stages following AngII treatment, supporting distinct roles in cardiac responses to stress. Furthermore, hearts from male Brn-3b KO mutant mice display contractile dysfunction at baseline but also attenuated hypertrophic responses to AngII treatment. Hearts from AngII-treated male Brn-3b KO mice develop further contractile dysfunction linked to extensive fibrosis/remodelling. Moreover, known Brn-3b target genes, e.g. GLUT4, are reduced in AngII-treated Brn-3b KO hearts, suggesting that Brn-3b and its target genes are important in driving adaptive hypertrophic responses in stressed heart.


Asunto(s)
Enfermedades Cardiovasculares/genética , Hipertrofia/genética , Miocardio/metabolismo , Factor de Transcripción Brn-3B/genética , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Apoptosis , Calcineurina/farmacología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Ciclina D1/genética , Regulación de la Expresión Génica/genética , Transportador de Glucosa de Tipo 4/genética , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , Ratas , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/genética
11.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31197108

RESUMEN

Brn3b (Pou4f2) is a class-4 POU domain transcription factor known to play central roles in the development of different neuronal populations of the Central Nervous System, including retinal ganglion cells (RGCs), the neurons that connect the retina with the visual centers of the brain. Here, we have used CRISPR-based genetic engineering to generate a Brn3b-mCherry reporter mouse without altering the endogenous expression of Brn3b. In our mouse line, mCherry faithfully recapitulates normal Brn3b expression in the retina, the optic tracts, the midbrain tectum, and the trigeminal ganglia. The high sensitivity of mCherry also revealed novel expression of Brn3b in the neuroectodermal cells of the optic stalk during early stages of eye development. Importantly, the fluorescent intensity of Brn3b-mCherry in our reporter mice allows for noninvasive live imaging of RGCs using Scanning Laser Ophthalmoscopy (SLO), providing a novel tool for longitudinal monitoring of RGCs.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas Luminiscentes/metabolismo , Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Animales , Sistemas CRISPR-Cas , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/diagnóstico por imagen , Factor de Transcripción Brn-3B/metabolismo , Vías Visuales/diagnóstico por imagen , Vías Visuales/metabolismo , Proteína Fluorescente Roja
12.
J Comp Neurol ; 526(13): 2010-2018, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29888785

RESUMEN

In addition to its well-known role in pattern vision, light influences a wide range of non-image forming, subconscious visual behaviors including circadian photoentrainment, sleep, mood, learning, and the pupillary light reflex. Each of these behaviors is thought to require input from the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cell (ipRGC). Recent work has demonstrated that the M1 subtype of ipRGC can be further subdivided based on expression of the transcription factor Brn3b. Brn3b-positive M1 ipRGCs project to the olivary pretectal nucleus and are necessary for the pupillary light reflex, while Brn3b-negative M1 ipRGCs project to the suprachiasmatic nucleus (SCN) and are sufficient for circadian photoentrainment. However, beyond the circadian and pupil systems, little is known about the projection patterns of M1 ipRGC subtypes. Here we show that Brn3b-positive M1 ipRGCs comprise the majority of sparse M1 ipRGC inputs to the thalamus, midbrain, and hypothalamus. Our data demonstrate that very few brain targets receive convergent input from both M1 ipRGC subpopulations, suggesting that each subpopulation drives a specific subset of light-driven behaviors.


Asunto(s)
Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/biosíntesis , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Olivar/metabolismo , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/clasificación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Vías Visuales/citología
13.
Stem Cells Transl Med ; 6(11): 1972-1986, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024560

RESUMEN

Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly-interspaced short palindromic repeats(CRISPR)-Cas9 engineered reporter knock-in embryonic stem cell lines in which tdTomato and a unique cell-surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)-enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti-THY1.2-based protocol that allows for large-scale RGC immunopurification. RNA-sequencing confirmed the similarity of the stem cell-derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high-throughput screening for neuroprotective compounds. Using this system in combination with RNAi-based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large-scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine 2017;6:1972-1986.


Asunto(s)
Diferenciación Celular , Técnicas de Reprogramación Celular/métodos , Edición Génica/métodos , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Sistemas CRISPR-Cas , Línea Celular , Células Cultivadas , Células Madre Embrionarias Humanas/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo
14.
Cell Death Dis ; 8(6): e2861, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28594399

RESUMEN

Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Proteínas de Homeodominio/biosíntesis , Factor de Transcripción Brn-3A/biosíntesis , Factor de Transcripción Brn-3B/biosíntesis , Animales , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3B/genética
15.
Mol Vis ; 22: 1048-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27587945

RESUMEN

PURPOSE: Brn3b is a class IV POU domain transcription factor that plays an important role in the development of retinal ganglion cells (RGCs), RGC survival, and particularly axon growth and pathfinding. Our previous study demonstrated that recombinant adenoassociated virus serotype 2 (rAAV-2)-mediated overexpression of Brn3b in RGCs promoted neuroprotection in a rodent model of glaucoma. However, the mechanisms underlying neuroprotection of RGCs in rats overexpressing Brn3b in animal models of glaucoma remain largely unknown. The goal of this study was to understand some of the mechanisms underlying the neuroprotection of RGCs overexpressing Brn3b during intraocular pressure (IOP) elevation in Brown Norway rats. METHODS: One eye of Brown Norway rats (Rattus norvegicus) was injected with an AAV construct encoding either green fluorescent protein (GFP; recombinant adenoassociated virus-green fluorescent protein, rAAV-hSyn-GFP) or Brn3b (rAAV-hSyn-Brn3b). Expression of antiapoptotic proteins, including B cell lymphoma/leukemia-2 (Bcl-2) family proteins (Bcl-2 and Bcl-xL), and p-AKT, was observed following immunostaining of rat retinas that overexpress Brn3b. In a different set of experiments, intraocular pressure was elevated in one eye of Brown Norway rats, which was followed by intravitreal injection with AAV constructs encoding either GFP (rAAV-CMV-GFP) or Brn3b (rAAV-CMV-Brn3b). Retinal sections were stained for prosurvival factors, including Bcl-2, Bcl-XL, and p-AKT. RESULTS: AAV-mediated expression of transcription factor Brn3b promoted statistically significant upregulation of the Bcl-2 protein and increased expression of p-AKT in RGCs of Brown Norway rats. In addition, following IOP elevation, AAV-mediated Brn3b expression also statistically significantly increased levels of Bcl-2 in the RGC layer in Brown Norway rats. CONCLUSIONS: Adenoassociated virus-mediated Brn3b protein overexpression may promote neuroprotection by upregulating key antiapoptotic proteins, including Bcl-2, Bcl-xL, and p-AKT, in animal models of glaucoma.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipertensión Ocular/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Proteína bcl-X/metabolismo , Animales , Supervivencia Celular/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Presión Intraocular/fisiología , Inyecciones Intravítreas , Masculino , Fármacos Neuroprotectores , Hipertensión Ocular/metabolismo , Plásmidos/genética , Ratas , Ratas Endogámicas BN , Regulación hacia Arriba
16.
Genesis ; 54(10): 534-541, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27532212

RESUMEN

Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.


Asunto(s)
Redes Reguladoras de Genes/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Animales , Axones/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/biosíntesis , Ratones , Retina/crecimiento & desarrollo , Retina/metabolismo , Factor de Transcripción Brn-3B/biosíntesis
17.
Mol Vis ; 22: 705-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27390513

RESUMEN

PURPOSE: A transgenic mouse that expresses Cre recombinase under control of the Pou4f2-promoter (also referred to as Brn-3b and Brn-3.2) was characterized. Pou4f2 expression has been reported in a subset of retinal ganglion cells (RGCs) in the retina, in the midbrain, and in the germline. In this study, we characterize the expression pattern of this Cre-recombinase line and report its utility in targeted deletion, temporal deletion, RGC depletion, and germline targeting, which can be regulated by the sex of the Cre-carrying mouse. METHODS: Pou4f2(Cre) was mapped by using a combination of PCR and sequencing of PCR products to better understand the construct and to locate where it was inserted within the Pou4f2 locus. Cre expression patterns were examined by crossing Pou4f2(Cre/+) mice to Cre reporter mice. Immunohistochemistry was used to further define the pattern of Cre expression and Cre-mediated recombination within the retina, brain, and other tissues. RESULTS: An internal ribosome entry site (IRES)-Cre cassette was inserted into the Pou4f2 gene disrupting normal gene function, as verified by the depletion of RGCs in mice homozygous for the insert. Pou4f2(Cre) expression was observed in the retina, brain, peripheral neurons, and male germ cells. Germline recombination was observed when the sire carried the Cre and the target for recombination. In all other breeding schemes, recombination was observed within subsets of cells within the retina, brain, intestines, heart, and gonads. In the retina, Cre efficiently targets recombination in neurons within the RGC layer (RGL), the inner nuclear layer (INL), and a small percentage of photoreceptors, activity that has not been previously reported. Unlike most other Cre lines active in the inner retina, recombination in Müller and other glia was not observed in mice carrying Pou4f2(Cre) . Within the visual centers of the brain, Cre targets recombination in about 15% of cells within the superchiasmatic nucleus, lateral geniculate nucleus, and superior colliculus. CONCLUSIONS: Pou4f2(Cre) provides multiple uses for the vision researcher's genetic toolkit. First, Pou4f2(Cre) is a knock-in allele that can be used to eliminate Pou4f2, resulting in depletion of RGCs. Second, expression of Cre in male germ cells makes this strain an efficient germline activator of recombination, for example, to target LoxP-flanked sequences in the whole mouse. Third, Pou4f2(Cre) efficiently targets RGCs, amacrine cells, bipolar cells, horizontal cells, and a small number of photoreceptors within the retina, as well as the visual centers in the brain. Unlike other Cre recombinase lines that target retinal neurons, no recombination was observed in Müller or other retinal glia. These properties make this Cre recombinase line a useful tool for vision researchers.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Integrasas/genética , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Alelos , Animales , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Biología Molecular/métodos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Recombinación Genética , Análisis de Secuencia de ADN
18.
Proc Biol Sci ; 283(1826): 20152978, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26962139

RESUMEN

Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones/genética , Células Ganglionares de la Retina/metabolismo , Strongylocentrotus purpuratus/genética , Factor de Transcripción Brn-3B/genética , Animales , Embrión de Mamíferos/embriología , Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Células Ganglionares de la Retina/citología , Strongylocentrotus purpuratus/metabolismo , Factor de Transcripción Brn-3B/metabolismo
19.
J Biol Chem ; 291(14): 7661-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26861874

RESUMEN

Retinal ganglion cells (RGCs) are projection neurons in the neural retina that relay visual information from the environment to the central nervous system. The early expression of MATH5 endows the post-mitotic precursors with RGC competence and leads to the activation ofBrn3bthat marks committed RGCs. Nevertheless, this fate commitment process and, specifically, regulation ofBrn3bremain elusive. To explore the molecular mechanisms underlying RGC generation in the mouse retina, we analyzed the expression and function of Fez family zinc finger 2 (FEZF2), a transcription factor critical for the development of projection neurons in the cerebral cortex.Fezf2mRNA and protein were transiently expressed at embryonic day 16.5 in the inner neuroblast layer and the prospective ganglion cell layer of the retina, respectively. Knockout ofFezf2in the developing retina reduced BRN3B+ cells and increased apoptotic cell markers.Fezf2knockdown by retinalin uteroelectroporation diminished BRN3B but not the coexpressed ISLET1 and BRN3A, indicating that the BRN3B decrease was the cause, not the result, of the overall reduction of BRN3B+ RGCs in theFezf2knockout retina. Moreover, the mRNA and promoter activity ofBrn3bwere increasedin vitroby FEZF2, which bound to a 5' regulatory fragment in theBrn3bgenomic locus. These results indicate that transient expression ofFezf2in the retina modulates the transcription ofBrn3band the survival of RGCs. This study improves our understanding of the transcriptional cascade required for the specification of RGCs and provides novel insights into the molecular basis of retinal development.


Asunto(s)
Apoptosis/fisiología , Proteínas de Unión al ADN/biosíntesis , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/biosíntesis , Transcripción Genética/fisiología , Animales , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Células Ganglionares de la Retina/citología , Factor de Transcripción Brn-3B/genética
20.
J Comp Neurol ; 524(5): 1033-61, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26356988

RESUMEN

During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.


Asunto(s)
Nervios Craneales/embriología , Nervios Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Factor de Transcripción Brn-3B/biosíntesis , Factor de Transcripción Brn-3B/genética , Animales , Nervios Craneales/crecimiento & desarrollo , Femenino , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...