Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Immunol ; 43(4): 808-818, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36753016

RESUMEN

PURPOSE: STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. METHODS: Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. RESULTS: WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. CONCLUSION: Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling.


Asunto(s)
Interferón Tipo I , Humanos , Anticuerpos/genética , Regulación de la Expresión Génica , Interferón Tipo I/genética , Mutación/genética , Transducción de Señal/fisiología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/química , Activación Transcripcional , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Homocigoto
2.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008916

RESUMEN

Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin-proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.


Asunto(s)
Proteolisis , Factor de Transcripción STAT2/metabolismo , Virus/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/ultraestructura , Ubiquitina/metabolismo
3.
J Virol ; 96(1): e0130121, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643427

RESUMEN

The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers, including the type I and type III interferon (IFN) antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN-stimulated gene transcription factor ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil domain contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response and identify new targets for antiviral therapeutic approaches. IMPORTANCE Zika virus infection can cause mild fever, rash, and muscle pain and in rare cases can lead to brain or nervous system diseases, including Guillain-Barré syndrome. Infections in pregnant women can increase the risk of miscarriage or serious birth defects, including brain anomalies and microcephaly. There are no drugs or vaccines for Zika disease. Zika virus is known to break down the host antiviral immune response, and this research project reveals how the virus suppresses interferon signaling, and may reveal therapeutic vulnerabilities.


Asunto(s)
Interacciones Huésped-Patógeno , Interferones/metabolismo , Factor de Transcripción STAT2/metabolismo , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Susceptibilidad a Enfermedades , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Factor de Transcripción STAT2/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
4.
J Clin Immunol ; 41(7): 1446-1456, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34448086

RESUMEN

STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Enfermedades del Sistema Inmune/genética , Interferón Tipo I/inmunología , Factor de Transcripción STAT2/genética , Virosis/genética , Animales , Mutación con Ganancia de Función , Enfermedades Genéticas Congénitas/inmunología , Predisposición Genética a la Enfermedad , Humanos , Enfermedades del Sistema Inmune/inmunología , Mutación con Pérdida de Función , Fenotipo , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/inmunología , Virosis/inmunología
5.
Cell Res ; 31(2): 206-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759968

RESUMEN

Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense.


Asunto(s)
Herpes Simple/metabolismo , Multimerización de Proteína/genética , Infecciones por Rhabdoviridae/metabolismo , Factor de Transcripción STAT1/química , Factor de Transcripción STAT2/química , Transducción de Señal/genética , Simplexvirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Animales , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/virología , Células HEK293 , Células HeLa , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Conformación Proteica , Interferencia de ARN , Infecciones por Rhabdoviridae/virología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Células Vero
6.
Nat Struct Mol Biol ; 27(10): 875-885, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778820

RESUMEN

Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy that viruses use to establish infections, yet the detailed mechanism remains elusive, owing to a lack of structural information about the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved interdomain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9. Second, the NS5 RdRP domain also binds the amino-terminal domain of hSTAT2. Disruption of these ZIKV NS5-hSTAT2 interactions compromised NS5-mediated hSTAT2 degradation and interferon suppression, and viral infection under interferon-competent conditions. Taken together, these results clarify the mechanism underlying the functional antagonism of STAT2 by both ZIKV and DENV.


Asunto(s)
Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/metabolismo , Proteínas no Estructurales Virales/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoplasma/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Modelos Moleculares , Conformación Proteica , Factor de Transcripción STAT2/genética , Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/virología
7.
Comput Biol Chem ; 88: 107332, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32721859

RESUMEN

Dengue is a mosquito-borne viral infection caused by Dengue virus (DENV) and is an emerging concern in public health affecting billions of people worldwide annually with no effective drugs available till now. Immunogenic and highly conserved properties of Non-Structural Protein 5(NS5) in DENV makes it a potent marker to identify DENV infection. DENV interfere in the innate immune signaling and thereby decreases antiviral responses and favors viral replication. Viral recognition by host pathogen recognition receptors facilitates binding of interferon (IFN) to the interferon receptors that further activates both the Signal Transducer and Activator of Transcription-2 (STAT-2) a factor producing an antiviral response. The most debilitating factor of DENV infection is emaciation of human immune system by DENV- NS5. NS5 counters the antiviral response by STAT2 degradation impeding the transcriptional activation of interferon stimulated genes through interferon stimulated response elements. The present study aims to identify inhibitors for NS5 Methyl Transferase (MTase) domain and to provide an insight into the mechanism of STAT2 degradation in the host infected with DENV. Virtual screening and molecular docking studies identified five potential inhibitors ZINC84154300, ZINC08762321, ZINC08762323, ZINC12659408 and ZINC12285470 with docking scores of -10.55, -10.53, -10.78, -11.28 and -10.78 kcal/mol respectively. To further investigate the stability of the complexes, we have used Molecular Dynamics Simulations (MD). Besides, the binding free energy of top 5 docked ligands were estimated through Molecular Mechanics Generalized Born and Surface Area Solvation (MM/GBSA) methods. This study also provides an insight on the mechanism of immunological processes involved in alleviating the antiviral immune response and computational identification of potent inhibitors for viral NS5 protein.


Asunto(s)
Antivirales/farmacología , Interferones/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Virus del Dengue/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
8.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581091

RESUMEN

Measles virus (MeV) is a highly immunotropic and contagious pathogen that can even diminish preexisting antibodies and remains a major cause of childhood morbidity and mortality worldwide despite the availability of effective vaccines. MeV is one of the most extensively studied viruses with respect to the mechanisms of JAK-STAT antagonism. Of the three proteins translated from the MeV P gene, P and V are essential for inactivation of this pathway. However, the lack of data from direct analyses of the underlying interactions means that the detailed molecular mechanism of antagonism remains unresolved. Here, we prepared recombinant MeV V protein, which is responsible for human JAK-STAT antagonism, and a panel of variants, enabling the biophysical characterization of V protein, including direct V/STAT1 and V/STAT2 interaction assays. Unambiguous direct interactions between the host and viral factors, in the absence of other factors such as Jak1 or Tyk2, were observed, and the dissociation constants were quantified for the first time. Our data indicate that interactions between the C-terminal region of V and STAT2 is 1 order of magnitude stronger than that of the N-terminal region of V and STAT1. We also clarified that these interactions are completely independent of each other. Moreover, results of size exclusion chromatography demonstrated that addition of MeV-V displaces STAT2-core, a rigid region of STAT2 lacking the N- and C-terminal domains, from preformed complexes of STAT2-core/IRF-associated domain (IRF9). These results provide a novel model whereby MeV-V can not only inhibit the STAT2/IRF9 interaction but also disrupt preassembled interferon-stimulated gene factor 3.IMPORTANCE To evade host immunity, many pathogenic viruses inactivate host Janus kinase signal transducer and activator of transcription (STAT) signaling pathways using diverse strategies. Measles virus utilizes P and V proteins to counteract this signaling pathway. Data derived largely from cell-based assays have indicated several amino acid residues of P and V proteins as important. However, biophysical properties of V protein or its direct interaction with STAT molecules using purified proteins have not been studied. We have developed novel molecular tools enabling us to identify a novel molecular mechanism for immune evasion whereby V protein disrupts critical immune complexes, providing a clear strategy by which measles virus can suppress interferon-mediated antiviral gene expression.


Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/química , Virus del Sarampión/metabolismo , Fosfoproteínas/química , Factor de Transcripción STAT2/química , Proteínas Virales/química , Sitios de Unión , Expresión Génica , Humanos , Evasión Inmune , Inmunidad Innata , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Quinasas Janus/metabolismo , Virus del Sarampión/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/metabolismo , Dedos de Zinc
9.
J Exp Med ; 217(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32092142

RESUMEN

Type I interferonopathies are monogenic disorders characterized by enhanced type I interferon (IFN-I) cytokine activity. Inherited USP18 and ISG15 deficiencies underlie type I interferonopathies by preventing the regulation of late responses to IFN-I. Specifically, USP18, being stabilized by ISG15, sterically hinders JAK1 from binding to the IFNAR2 subunit of the IFN-I receptor. We report an infant who died of autoinflammation due to a homozygous missense mutation (R148Q) in STAT2. The variant is a gain of function (GOF) for induction of the late, but not early, response to IFN-I. Surprisingly, the mutation does not enhance the intrinsic activity of the STAT2-containing transcriptional complex responsible for IFN-I-stimulated gene induction. Rather, the STAT2 R148Q variant is a GOF because it fails to appropriately traffic USP18 to IFNAR2, thereby preventing USP18 from negatively regulating responses to IFN-I. Homozygosity for STAT2 R148Q represents a novel molecular and clinical phenocopy of inherited USP18 deficiency, which, together with inherited ISG15 deficiency, defines a group of type I interferonopathies characterized by an impaired regulation of late cellular responses to IFN-I.


Asunto(s)
Mutación con Ganancia de Función/genética , Interferón Tipo I/metabolismo , Factor de Transcripción STAT2/genética , Ubiquitina Tiolesterasa/deficiencia , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Recién Nacido , Masculino , Linaje , Fenotipo , Dominios Proteicos , Factor de Transcripción STAT2/química , Ubiquitina Tiolesterasa/genética , Secuenciación del Exoma
10.
Proc Natl Acad Sci U S A ; 117(1): 584-594, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843895

RESUMEN

In this study, we provide critical evidence that STAT2 stability regulation plays an essential role in melanoma cell proliferation and colony growth. We found that the interaction of FBXW7 and STAT2 induced STAT2 destabilization via a ubiquitination-mediated proteasomal degradation pathway. Notably, GSK3ß-mediated STAT2 phosphorylation facilitated STAT2-FBXW7 interactions via the DNA binding domain of STAT2 and domains 1, 2, 6, and 7 of FBXW7 WD40. Importantly, the inverse correlation between protein levels of STAT2 and FBXW7 were observed not only in human melanoma cells but also in a human skin cancer tissue array. The relationship between protein levels of STAT2 and FBXW7, cell proliferation, and colony growth were similarly observed in the melanoma cell lines SK-MEL-2, -5, and -28. Moreover, STAT2 knockdown in melanoma cells suppressed melanoma cell proliferation and colony formation. These data demonstrated that FBXW7-mediated STAT2 stability regulation plays an essential role in melanoma cell proliferation and cancer growth.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Melanoma/patología , Factor de Transcripción STAT2/metabolismo , Neoplasias Cutáneas/patología , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Estabilidad Proteica , Proteolisis , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/genética , Serina/metabolismo , Transducción de Señal , Piel/patología , Treonina/metabolismo , Análisis de Matrices Tisulares , Ubiquitinación , Repeticiones WD40
11.
Proc Natl Acad Sci U S A ; 116(35): 17480-17491, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31413201

RESUMEN

In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-ß responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-ß. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1-/-) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1-/- mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.


Asunto(s)
Interferón Tipo I/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Perfilación de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Unión Proteica , Multimerización de Proteína , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/metabolismo , Toxoplasmosis/inmunología
12.
Phytomedicine ; 52: 238-246, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30599904

RESUMEN

BACKGROUND: The high mortality rate of oral cancers has stimulated the search for effective herbal medicines and their pharmacological targets. Vernonia cinerea, a perennial tropical herb, is wildly used as a traditional folk medicine for treatment of intestinal diseases and various skin diseases in addition to possessing anti-cancer activity. However, the effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) as a major sesquiterpene lactone compound found in V. cinerea and the underlying mechanism of its action on oral cancer cells remains unknown. PURPOSE: To investigate the anti-cancer activity of 8αTGH extracted from V. cinerea and the underlying mechanism of its action in oral cancer cells. METHODS: The anti-proliferative effect of 8αTGH on oral squamous cell carcinoma (HSC4) and lung carcinoma (A549) was determined using the SRB colorimetric method. The molecular mechanism of 8αTGH was explored using kinase inhibitors, followed by Western blotting or RT-qPCR. Flow cytometry and Western blotting were used to assess cell cycle arrest. RESULTS: 8αTGH inhibited cancer cell growth more effectively on HSC4 than A549 and was much less effective on tested normal oral cells. 8αTGH inhibited STAT3 phosphorylation on both cancer cells. Notably, 8αTGH was able to suppress the constantly activated STAT2 found only in HSC4. The STAT2 inhibition by 8αTGH consequently caused down-regulation of ISG15 and ISG15 conjugates. As a result, decreased expression of CDK1/2 and Cyclin B1 was detected leading to G2/M cell cycle arrest. CONCLUSION: 8αTGH isolated from V. cinerea preferentially inhibits the proliferation of oral cancer cells by causing G2/M cell cycle arrest via inhibition of both STAT3 and STAT2 phosphorylation. The results provide molecular bases for developing 8αTGH as a drug candidate or a complementary treatment of oral cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/patología , Furanos/farmacología , Lactonas/farmacología , Neoplasias de la Boca/patología , Factor de Transcripción STAT2/química , Factor de Transcripción STAT3/química , Sesquiterpenos/farmacología , Vernonia/química , Células A549 , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Regulación hacia Abajo , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Fosforilación , Fitoquímicos/farmacología , Plantas Medicinales/química
13.
Front Immunol ; 9: 1135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892288

RESUMEN

Interferon (IFN)-I and IFN-II both induce IFN-stimulated gene (ISG) expression through Janus kinase (JAK)-dependent phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT2. STAT1 homodimers, known as γ-activated factor (GAF), activate transcription in response to all types of IFNs by direct binding to IFN-II activation site (γ-activated sequence)-containing genes. Association of interferon regulatory factor (IRF) 9 with STAT1-STAT2 heterodimers [known as interferon-stimulated gene factor 3 (ISGF3)] or with STAT2 homodimers (STAT2/IRF9) in response to IFN-I, redirects these complexes to a distinct group of target genes harboring the interferon-stimulated response element (ISRE). Similarly, IRF1 regulates expression of ISGs in response to IFN-I and IFN-II by directly binding the ISRE or IRF-responsive element. In addition, evidence is accumulating for an IFN-independent and -dependent role of unphosphorylated STAT1 and STAT2, with or without IRF9, and IRF1 in basal as well as long-term ISG expression. This review provides insight into the existence of an intracellular amplifier circuit regulating ISG expression and controlling long-term cellular responsiveness to IFN-I and IFN-II. The exact timely steps that take place during IFN-activated feedback regulation and the control of ISG transcription and long-term cellular responsiveness to IFN-I and IFN-II is currently not clear. Based on existing literature and our novel data, we predict the existence of a multifaceted intracellular amplifier circuit that depends on unphosphorylated and phosphorylated ISGF3 and GAF complexes and IRF1. In a combinatorial and timely fashion, these complexes mediate prolonged ISG expression and control cellular responsiveness to IFN-I and IFN-II. This proposed intracellular amplifier circuit also provides a molecular explanation for the existing overlap between IFN-I and IFN-II activated ISG expression.


Asunto(s)
Retroalimentación Fisiológica , Factores Reguladores del Interferón/genética , Factor 3 de Genes Estimulados por el Interferón/genética , Interferones/metabolismo , Animales , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Humanos , Factores Reguladores del Interferón/metabolismo , Factor 3 de Genes Estimulados por el Interferón/metabolismo , Mutación , Unión Proteica , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/metabolismo
14.
ACS Chem Biol ; 13(5): 1218-1227, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29614221

RESUMEN

Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.


Asunto(s)
Proteína de Unión a CREB/química , Proteínas Intrínsecamente Desordenadas/química , Dominios y Motivos de Interacción de Proteínas , Factor de Transcripción STAT2/química , Calorimetría , Entropía , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Unión Proteica , Mapeo de Interacción de Proteínas
15.
J Biol Chem ; 292(48): 19752-19766, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978648

RESUMEN

Sendai virus (SeV), which causes respiratory diseases in rodents, possesses the C protein that blocks the signal transduction of interferon (IFN), thereby escaping from host innate immunity. We previously demonstrated by using protein crystallography that two molecules of Y3 (the C-terminal half of the C protein) can bind to the homodimer of the N-terminal domain of STAT1 (STAT1ND), elucidating the mechanism of inhibition of IFN-γ signal transduction. SeV C protein also blocks the signal transduction of IFN-α/ß by inhibiting the phosphorylation of STAT1 and STAT2, although the mechanism for the inhibition is unclear. Therefore, we sought to elucidate the mechanism of inhibition of the IFN signal transduction via STAT1 and STAT2. Small angle X-ray scattering analysis indicated that STAT1ND associates with the N-terminal domain of STAT2 (STAT2ND) with the help of a Gly-rich linker. We generated a linker-less recombinant protein possessing a STAT1ND:STAT2ND heterodimeric structure via an artificial disulfide bond. Analytical size-exclusion chromatography and surface plasmon resonance revealed that one molecule of Y3 can associate with a linker-less recombinant protein. We propose that one molecule of C protein associates with the STAT1:STAT2 heterodimer, inducing a conformational change to an antiparallel form, which is easily dephosphorylated. This suggests that association of C protein with the STAT1ND:STAT2ND heterodimer is an important factor to block the IFN-α/ß signal transduction.


Asunto(s)
Interferón Tipo I/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Virus Sendai/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Línea Celular , Cristalografía por Rayos X , Dimerización , Humanos , Fosforilación , Conformación Proteica , Factor de Transcripción STAT1/química , Factor de Transcripción STAT2/química
16.
Biochemistry ; 56(32): 4145-4153, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28707474

RESUMEN

A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Modelos Químicos , Fragmentos de Péptidos/química , Factor de Transcripción STAT2/química , Sialoglicoproteínas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
17.
Virology ; 507: 161-169, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28441586

RESUMEN

Emerged porcine kobuvirus (PKV) has adversely affected the global swine industry since 2008, but the etiological biology of PKV is unclear. Screening PKV-encoded structural and non-structural proteins with a type I IFN-responsive luciferase reporter showed that PKV VP3 protein inhibited the IFN-ß-triggered signaling pathway, resulting in the decrease of VSV-GFP replication. QPCR data showed that IFN-ß downstream cytokine genes were suppressed without cell-type specificity as well. The results from biochemical experiments indicated that PKV VP3 associated with STAT2 and IRF9, and interfered with the formation of the STAT2-IRF9 and STAT2-STAT2 complex, impairing nuclear translocation of STAT2 and IRF9. Taken together, these data reveal a new mechanism for immune evasion of PKV.


Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Interferón beta/inmunología , Kobuvirus/inmunología , Infecciones por Picornaviridae/inmunología , Factor de Transcripción STAT2/inmunología , Proteínas Virales/inmunología , Animales , Línea Celular , Dimerización , Humanos , Evasión Inmune , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Interferón beta/genética , Kobuvirus/genética , Ratones , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/virología , Factor de Transcripción STAT2/química , Factor de Transcripción STAT2/genética , Transducción de Señal , Proteínas Virales/genética
18.
Infect Genet Evol ; 51: 143-152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28365387

RESUMEN

The Zika virus outbreak in 2015-2016 is the largest of its kind for which WHO declared a Public Health Emergency of International Concerns. No FDA approved drug is available for the treatment of the viral infection. The interaction of flavivirus NS5 protein with SIAH2 ubiquitin ligase has been previously known. NS5 of Zika virus has been implicated in the degradation of STAT2 protein, which activates interferon-stimulated antiviral activity. Based on our proposition that NS5 utilizes SIAH2-mediated proteasomal degradation of STAT2, an in-silico study was carried out to characterize the protein-protein interactions between NS5, SIAH2 and STAT2 proteins. The aim of our study was to identify the amino acid residues of NS5 involved in IFN antagonism as well as to find the association between NS5, SIAH2 and STAT2 to predict the interaction pattern of these proteins. Analysis proposed that NS5 recruits SIAH2 for the ubiquitination-dependent degradation of STAT2. NS5 residues involved in interaction with SIAH2 and/or STAT2 were found to be mostly conserved across related flaviviruses. These are novel findings regarding the Zika virus and require confirmation through experimental approaches.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Proteínas Nucleares/química , Factor de Transcripción STAT2/química , Ubiquitina-Proteína Ligasas/química , Proteínas no Estructurales Virales/química , Virus Zika/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Expresión Génica , Humanos , Interferones/genética , Interferones/inmunología , Simulación del Acoplamiento Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Virus Zika/enzimología , Virus Zika/inmunología , Infección por el Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
19.
Nat Struct Mol Biol ; 24(3): 279-289, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28165510

RESUMEN

Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn may interfere with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus, thus resulting in alterations in gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized, crucial component of the USP18-mediated negative-feedback control in both human and mouse cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2-binding site. This mechanistic coupling of effector and negative-feedback functions of STAT2 may provide novel strategies for treatment of IFN-signaling-related human diseases.


Asunto(s)
Endopeptidasas/metabolismo , Interferón Tipo I/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Retroalimentación Fisiológica , Humanos , Immunoblotting , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT2/química , Técnicas del Sistema de Dos Híbridos , Ubiquitina Tiolesterasa
20.
J Cell Sci ; 129(22): 4190-4199, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802159

RESUMEN

Serine phosphorylation of STAT proteins is an important post-translational modification event that, in addition to tyrosine phosphorylation, is required for strong transcriptional activity. However, we recently showed that phosphorylation of STAT2 on S287 induced by type I interferons (IFN-α and IFN-ß), evoked the opposite effect. S287-STAT2 phosphorylation inhibited the biological effects of IFN-α. We now report the identification and characterization of S734 on the C-terminal transactivation domain of STAT2 as a new phosphorylation site that can be induced by type I IFNs. IFN-α-induced S734-STAT2 phosphorylation displayed different kinetics to that of tyrosine phosphorylation. S734-STAT2 phosphorylation was dependent on STAT2 tyrosine phosphorylation and JAK1 kinase activity. Mutation of S734-STAT2 to alanine (S734A) enhanced IFN-α-driven antiviral responses compared to those driven by wild-type STAT2. Furthermore, DNA microarray analysis demonstrated that a small subset of type I IFN stimulated genes (ISGs) was induced more by IFNα in cells expressing S734A-STAT2 when compared to wild-type STAT2. Taken together, these studies identify phosphorylation of S734-STAT2 as a new regulatory mechanism that negatively controls the type I IFN-antiviral response by limiting the expression of a select subset of antiviral ISGs.


Asunto(s)
Antivirales/farmacología , Interferón-alfa/farmacología , Factor de Transcripción STAT2/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Quinasas Janus/metabolismo , Espectrometría de Masas , Ratones , Modelos Biológicos , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT2/química , Fracciones Subcelulares/metabolismo , Vesiculovirus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...