Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612496

RESUMEN

Proton pump inhibitors (PPIs) are the first-line drug for eosinophilic esophagitis (EoE), although it is estimated that there is a lack of histological remission in 50% of patients. This research aimed to identify pharmacogenetic biomarkers predictive of PPI effectiveness and to study their association with disease features. Peak eosinophil count (PEC) and the endoscopic reference score (EREFS) were determined before and after an eight-week PPI course in 28 EoE patients. The impact of the signal transducer and activator of transcription 6 (STAT6), CYP2C19, CYP3A4, CYP3A5, and ABCB1 genetic variations on baseline PEC and EREFS, their reduction and histological response, and on EoE symptoms and comorbidities was analyzed. PEC reduction was higher in omeprazole-treated patients (92.5%) compared to other PPIs (57.9%, p = 0.003). STAT6 rs12368672 (g.18453G>C) G/G genotype showed higher baseline PEC values compared to G/C and C/C genotypes (83.2 vs. 52.9, p = 0.027). EREFS reduction in STAT6 rs12368672 G/G and G/C genotypes was higher than in the C/C genotype (36.7% vs. -75.0% p = 0.011). However, significance was lost after Bonferroni correction. Heartburn incidence was higher in STAT6 rs167769 (g.27148G>A) G/G patients compared to G/A (54.55% vs. 11.77%, p = 0.030). STAT6 rs12368672G>C and rs167769G>A variants might have a relevant impact on EoE status and PPI response. Further research is warranted to clarify the clinical relevance of these variants.


Asunto(s)
Enteritis , Eosinofilia , Esofagitis Eosinofílica , Gastritis , Humanos , Esofagitis Eosinofílica/tratamiento farmacológico , Esofagitis Eosinofílica/epidemiología , Esofagitis Eosinofílica/genética , Inhibidores de la Bomba de Protones/uso terapéutico , Factor de Transcripción STAT6/genética , Comorbilidad
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565385

RESUMEN

Spinal cord injury (SCI) induces severe neuroinflammation, and subsequently neurological dysfunction. Activated microglia are critical for modulation of neuroinflammation. Protein tyrosine phosphatase receptor type O (PTPRO), a member of protein tyrosine phosphatases (PTPs), exerts a pro-inflammatory role in multiple human diseases; however, its role in SCI remains unclarified. Here, a T7 spinal cord compression injury model was established in Sprague-Dawley (SD) rats, and PTPRO expression was upregulated in injured spinal cord and microglia after SCI. Microglia M1 and M2 polarization in vitro were induced using LPS/IFN-γ and IL-4, respectively. PTPRO expression was elevated in M1-polarized microglia, and PTPRO downregulation mediated by PTPRO shRNA (shPTPRO) decreased CD86+ cell proportion, iNOS, TNF-α, IL-1ß, and IL-6 levels, and p65 phosphorylation. PTPRO was downregulated in M2 microglia, and PTPRO upregulation by PTPRO overexpression plasmid (OE-PTPRO) reduced CD206+ cell percentage, Arg-1, IL-10, and TGF-ß1 levels and STAT6 phosphorylation. Mechanistically, the transcription factor SOX4 elevated PTPRO expression and its promoter activity. SOX4 overexpression enhanced M1 polarization and p65 phosphorylation, while its knockdown promoted M2 polarization and STAT6 phosphorylation. PTPRO might mediate the function of SOX4 in BV2 microglia polarization. Furthermore, lentivirus-mediated downregulation of PTPRO following SCI improved locomotor functional recovery, demonstrated by elevated BBB scores, incline angle, consistent hindlimb coordination, and reduced lesion area and neuronal apoptosis. PTPRO downregulation promoted microglia M2 polarization, NF-κB inactivation and STAT6 activation after injury. In conclusion, PTPRO inhibition improves spinal cord injury through facilitating M2 microglia polarization via the NF-κB/STAT6 signaling pathway, which is probably controlled by SOX4.


Asunto(s)
Microglía , FN-kappa B , Ratas Sprague-Dawley , Factor de Transcripción STAT6 , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Microglía/metabolismo , Microglía/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Transducción de Señal/efectos de los fármacos , Ratas , FN-kappa B/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Masculino , Modelos Animales de Enfermedad , Polaridad Celular/efectos de los fármacos
3.
Head Neck ; 46(6): 1294-1303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497289

RESUMEN

BACKGROUND: The prevalence of HPV-negative oropharyngeal cancer (OPC) is higher in Asian countries. Patients with HPV-negative OPC suffer poor outcomes. Multi-omics analysis could provide researchers and clinicians with more treatment targets for this high-risk group. We aimed to explore the prognostic significance of EGFR overexpression and macrophage infiltration in OPC, especially HPV-negative OPC in this study. METHODS: EGFR alternation was evaluated with TCGA, PanCancer Atlas through cBioProtal. EGFR mRNA expression in HPV-negative head and neck squamous cell carcinoma was analyzed using the Tumor Immune Estimation Resource (TIMER 2.0). We also examined EGFR/STAT6/MRC1 expression in paraffin-embedded tissues from a p16-negative OPC cohort. The correlation between EGFR expression and macrophage activation was explored using Person's correlation coefficient. The impact of biomarkers or macrophage infiltration on 5-year overall survival and recurrence-free survival were analyzed using Kaplan-Meier survival curves. RESULTS: EGFR alteration rate was 15%, 13%, and 0% for HPV-negative HNSCC (excluding OPC), HPV-negative OPC, and HPV-positive OPC. High EGFR expression was associated with increased tumor infiltration of immune cells, such as macrophages. We observed positive correlations between EGFR, STAT6, and MRC1 expression in p16-negative OPC. Higher MRC1 expression was associated with poorer survival rates. CONCLUSIONS: There is strong correlation between EGFR overexpression and M2 polarization in patients with p16-negative OPC. Immunotherapy with or without EGFR inhibitor could be considered in these high-risk patients.


Asunto(s)
Receptores ErbB , Neoplasias Orofaríngeas , Factor de Transcripción STAT6 , Humanos , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/terapia , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Macrófagos/metabolismo , Transducción de Señal , Anciano , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Biomarcadores de Tumor/metabolismo
4.
Mol Cancer ; 23(1): 49, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459596

RESUMEN

Circular RNAs (circRNAs) play important roles in gastric cancer progression but the regulatory role of circRNAs in controlling macrophage function remains elusive. Exosomes serve as cargo for circRNAs and play a crucial role as mediators in facilitating communication between cancer cells and the tumor microenvironment. In this study, we found that circATP8A1, a previously unreported circular RNA, is highly expressed in both gastric cancer tissues and exosomes derived from plasma. Increased circATP8A1 was associated with advanced TNM stage and worse prognosis in patients with gastric cancer. We showed that  the circATP8A1 knockdown significantly inhibited gastric cancer proliferation and invasion in vitro and in vivo. Functionally, exosome circATP8A1 induced the M2 polarization of macrophages through the STAT6 pathway instead of the STAT3 pathway. Mechanistically, circATP8A1 was shown to activate the STAT6 pathway through competitive binding to miR-1-3p, as confirmed by Fluorescence In Situ Hybridization (FISH), RNA immunoprecipitation, RNA pulldown, and Luciferase reporter assays. The reversal of circATP8A1-induced STAT6 pathway activation and macrophage polarization was observed upon blocking miR-1-3p. Macrophages treated with exosomes from gastric cancer cells overexpressing circATP8A1 were able to promote gastric cancer migration, while knockdown of circATP8A1 reversed these effects in vivo. In summary, exosome-derived circATP8A1 from gastric cancer cells induce macrophages M2 polarization via the circATP8A1/miR-1-3p/STAT6 axis, and tumor progression. Our results highlight circATP8A1 as a potential prognostic biomarker and therapeutic target in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Hibridación Fluorescente in Situ , Macrófagos , MicroARNs/genética , ARN Circular/genética , Factor de Transcripción STAT6/genética , Neoplasias Gástricas/genética , Microambiente Tumoral
5.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507725

RESUMEN

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Asunto(s)
Asma , Flavanonas , Glucósidos , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Ovalbúmina/efectos adversos , Ovalbúmina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacología , Interleucina-5/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/genética , Pulmón/metabolismo , Inflamación/metabolismo , Moco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/farmacología
6.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342302

RESUMEN

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Hígado , Macrófagos , Ratones Noqueados , Daño por Reperfusión , Proteína de Unión al GTP cdc42 , Animales , Daño por Reperfusión/patología , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Inflamación/patología , Inflamación/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Factor de Transcripción STAT3/metabolismo , Masculino , Factor de Transcripción STAT1/metabolismo , Citocinas/metabolismo , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/deficiencia , Ratones Endogámicos C57BL , Eliminación de Gen
7.
Pathol Res Pract ; 254: 155143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301364

RESUMEN

Solitary fibrous tumors (SFTs) are known for their heterogeneous morphology, characterized by a variety of cell shapes and different growth patterns. They can also arise in various anatomical locations, most commonly in extremities and deep soft tissues. Despite this diversity in morphology and location, all SFTs share a common molecular signature involving the NAB2::STAT6 gene fusion. Due to their unpredictable clinical behavior, establishing prognostic factors is crucial. This study aims to evaluate an orbital risk stratification system (RSS) proposed by Huang et al. for use in extraorbital SFTs using a database of 97 cases. The Huang model takes into consideration tumor size, mitotic figures, Ki-67 index, and dominant constituent cell (DCC) as key variables. Survival analysis confirmed the model's predictive value, with higher-risk scores being associated with poorer outcomes. However, in contrast to the orbital SFTs studied by Huang et al., our study did not find a correlation between tumor size and recurrence in extraorbital cases. While the Huang model performs slightly better than other RSS, it falls short on achieving statistical significance in distinguishing recurrence risk groups in extraorbital locations. In conclusion, this study validates the Huang RSS for use in extraorbital SFTs and underscores the importance of considering DCC, mitotic count, and Ki-67 together. However, we found that including tumor size in this model did not improve prognostic significance in extraorbital SFTs. Despite the benefits of this additional RSS, vigilant monitoring remains essential, even in cases classified as low-risk due to the inherent unpredictability of SFT clinical outcomes.


Asunto(s)
Hemangiopericitoma , Neoplasias Orbitales , Síndrome de Trombocitopenia Febril Grave , Tumores Fibrosos Solitarios , Humanos , Neoplasias Orbitales/genética , Pronóstico , Antígeno Ki-67 , Proteínas Represoras/genética , Tumores Fibrosos Solitarios/diagnóstico , Tumores Fibrosos Solitarios/genética , Factor de Transcripción STAT6/genética , Medición de Riesgo , Biomarcadores de Tumor/genética
8.
Environ Res ; 249: 118437, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346486

RESUMEN

The widespread prevalence of micro and nanoplastics in the environment raises concerns about their potential impact on human health. Recent evidence demonstrates the presence of nanoplastics in human blood and tissues following ingestion and inhalation, yet the specific risks and mechanisms of nanoplastic toxicity remain inadequately understood. In this study, we aimed to explore the molecular mechanisms underlying the toxicity of nanoplastics at both systemic and molecular levels by analyzing the transcriptomic/metabolomic responses and signaling pathways in the intestines of mice after oral administration of nanoplastics. Transcriptome analysis in nanoplastic-administered mice revealed a notable upregulation of genes involved in pro-inflammatory immune responses. In addition, nanoplastics substantially reduced the expression of tight junction proteins, including occludin, zonula occluden-1, and tricellulin, which are crucial for maintaining gut barrier integrity and function. Importantly, nanoplastic administration increased gut permeability and exacerbated dextran sulfate sodium-induced colitis. Further investigation into the underlying molecular mechanisms highlighted significant activation of signaling transsducer and activator of transcription (STAT)1 and STAT6 by nanoplastic administration, which was in line with the elevation of interferon and JAK-STAT pathway signatures identified through transcriptome enrichment analysis. Additionally, the consumption of nanoplastics specifically induced nuclear factor kappa-B (NF-κB) and extracellular signal-regulated kinase (ERK)1/2 signaling pathways in the intestines. Collectively, this study identifies molecular mechanisms contributing to adverse effects mediated by nanoplastics in the intestine, providing novel insights into the pathophysiological consequences of nanoplastic exposure.


Asunto(s)
Factor de Transcripción STAT1 , Animales , Ratones , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Transcriptoma/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Ratones Endogámicos C57BL , Nanopartículas/toxicidad , Metabolómica , Masculino , Colitis/inducido químicamente , Colitis/metabolismo
9.
Int J Hematol ; 119(3): 275-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285120

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) relapses in approximately 40% of patients following frontline therapy. We reported that STAT6D419 mutations are enriched in relapsed/refractory DLBCL (rrDLBCL) samples, suggesting that JAK/STAT signaling plays a role in therapeutic resistance. We hypothesized that STAT6D419 mutations can improve DLBCL cell survival by reprogramming the microenvironment to sustain STAT6 activation. Thus, we investigated the role of STAT6D419 mutations on DLBCL cell growth and its microenvironment. We found that phospho-STAT6D419N was retained in the nucleus longer than phospho-STAT6WT following IL-4 stimulation, and STAT6D419N recognized a more restricted DNA-consensus sequence than STAT6WT. Upon IL-4 induction, STAT6D419N expression led to a higher magnitude of gene expression changes, but in a more selective list of gene targets compared with STATWT. The most significantly expressed genes induced by STAT6D419N were those implicated in survival, proliferation, migration, and chemotaxis, in particular CCL17. This chemokine, also known as TARC, attracts helper T-cells to the tumor microenvironment, especially in Hodgkin's lymphoma. To this end, in DLBCL, phospho-STAT6+ rrDLBCL cells had a greater proportion of infiltrating CD4+ T-cells than phospho-STAT6- tumors. Our findings suggest that STAT6D419 mutations in DLBCL lead to cell autonomous changes, enhanced signaling, and altered composition of the tumor microenvironment.


Asunto(s)
Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-4/farmacología , Recurrencia Local de Neoplasia , Linfoma de Células B Grandes Difuso/patología , Mutación , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
10.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238227

RESUMEN

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Asunto(s)
Hipersensibilidad , Linfoma , Humanos , Mutación con Ganancia de Función , Hipersensibilidad/genética , Regulación de la Expresión Génica , Células Germinativas , Factor de Transcripción STAT6/genética
11.
J Chemother ; 36(1): 61-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37151185

RESUMEN

A total of 162 non-small cell lung cancer (NSCLC) patients were divided into discovery (N = 68) and validation (N = 94) groups. Nine Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathway-related single nucleotide polymorphisms were selected to explore the potential associations between genetic polymorphisms and adverse drug reactions (ADRs). The TT genotype of STAT6 rs324011 was significantly associated with severe ADRs in the recessive genetic model (TT vs. CC + CT, OR = 13.5, 95% CI = 2.12-86.09, p = 0.006 in the discovery group; OR = 8.41, 95% CI = 1.95-36.19, p = 0.004 in the validation group). The T allele was associated with a higher incidence of severe ADRs than was the C allele of rs324011 (OR = 3.67, 95% CI = 1.46-9.19, p = 0.006 in the discovery group; OR = 3.17, 95% CI = 1.44-6.99, p = 0.004 in the validation group). Patients with the CC genotype in STAT3 rs1053023 (and rs1053005) or the TT genotype of STAT6 rs324011 were likely to experience severe epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) related ADRs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Receptores ErbB , China , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT3
13.
Int J Biol Macromol ; 254(Pt 1): 127680, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890744

RESUMEN

Oral delivery of chitosan-coated artesunate (CPA) has been proven to be effective at preventing ulcerative colitis (UC) in mice. However, the anti-inflammatory mechanism is not fully understood. STAT6 is a key transcription factor that promotes anti-inflammatory effects by inducing M2 and Th2 dominant phenotypes, therefore we hypothesized STAT6 might play a key role in the process. To prove it, a STAT6 gene knockout macrophage cell line (STAT6-/- RAW264.7, by CRISPR/Cas9 method), and its corresponding Caco-2/RAW264.7 co-culture system combined with the STAT6 inhibitor (AS1517499, AS) in a mouse UC model were established and studied. The results showed that CPA remarkably suppressed the activation of TLR-4/NF-κB pathway and the mRNA levels of proinflammatory cytokines, while increased the IL-10 levels in RAW264.7. This effect of CPA contributed to the protection of the ZO-1 in Caco-2 which was disrupted upon the stimulation to macrophages. Simultaneously, CPA reduced the expression of CD86 but increase the expression of CD206 and p-STAT6 in LPS-stimulated RAW264.7 cells. However, above alterations were not obvious as in STAT6-/- RAW264.7 and its co-culture system, suggesting STAT6 plays a key role. Furthermore, CPA treatment significantly inhibited TLR-4/NF-κB activation, intestinal macrophage M1 polarization and mucosal barrier injury induced by DSS while promoted STAT6 phosphorylation in the UC mouse model, but this effect was also prominently counteracted by AS. Therefore, our data indicate that STAT6 is a major regulator in the balance of M1/M2 polarization, intestinal barrier integrity and then anti-colitis effects of CPA. These findings broaden our understanding of how CPA fights against UC and imply an alternative treatment strategy for UC via this pathway.


Asunto(s)
Quitosano , Colitis Ulcerosa , Humanos , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Artesunato/farmacología , Artesunato/metabolismo , Quitosano/farmacología , FN-kappa B/metabolismo , Células CACO-2 , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Macrófagos , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Sulfato de Dextran/efectos adversos , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/farmacología
14.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855177

RESUMEN

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Asunto(s)
Asma , Resistina , Animales , Ratones , Asma/metabolismo , Células Epiteliales/metabolismo , Pulmón , Moco/metabolismo , Resistina/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
15.
PLoS Pathog ; 19(12): e1011797, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38079450

RESUMEN

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.


Asunto(s)
Ancylostomatoidea , Infecciones por Uncinaria , Ratones , Animales , Citocinas , Nippostrongylus , Factor de Transcripción STAT6/genética
17.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924395

RESUMEN

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Asunto(s)
Cálculos Renales , Miofibroblastos , Animales , Humanos , Ratones , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Ácidos Grasos/metabolismo , Fibrosis , Glioxilatos/metabolismo , Glioxilatos/farmacología , Riñón/patología , Cálculos Renales/metabolismo , Cálculos Renales/patología , Macrófagos/metabolismo , Miofibroblastos/patología , Oxalatos/metabolismo , Oxalatos/farmacología , PPAR alfa/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
18.
In Vivo ; 37(6): 2849-2853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905637

RESUMEN

BACKGROUND/AIM: We present a case of solitary fibrous tumor, arising from the diaphragm in the retroperitoneal space, that was resected with robotic assistance. CASE REPORT: An 85-year-old female patient was referred to our hospital for evaluation of a suspected right renal tumor. Abdominal contrast-enhanced computed tomography revealed a tumor (maximum diameter, 36 mm) protruding from the superior pole of the right kidney. The patient was scheduled for robot-assisted, retroperitoneoscopic, partial nephrectomy based on a preoperative diagnosis of renal cell carcinoma. Intraoperative findings revealed that the tumor originated from the diaphragm and had no continuity with the renal parenchyma. Pathological examination revealed a solitary fibrous tumor. CONCLUSION: Solitary fibrous tumors are rare soft-tissue neoplasms with a distinct molecular feature of the fusion of nerve growth factor-inducible A gene-binding protein 2 with signal transducer and activator of transcription 6 gene (NAB2::STAT6). We believe that this is the first reported case of a solitary fibrous tumor arising from the diaphragm in the retroperitoneal space.


Asunto(s)
Hemangiopericitoma , Tumores Fibrosos Solitarios , Femenino , Humanos , Anciano de 80 o más Años , Diafragma/diagnóstico por imagen , Diafragma/cirugía , Espacio Retroperitoneal/patología , Tumores Fibrosos Solitarios/diagnóstico por imagen , Tumores Fibrosos Solitarios/cirugía , Tórax , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Biomarcadores de Tumor
19.
Viral Immunol ; 36(7): 449-457, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406292

RESUMEN

Respiratory virus infections are the main causes of pediatric diseases. Human metapneumovirus (hMPV) is an enveloped RNA virus similar to severe acute respiratory syndrome coronavirus type 2, both of which have emerged as important new respiratory viruses. Recent studies have found that interleukin-4 (IL-4) is involved in the replication of a variety of viruses, and its role differs in different viruses. The purpose of this study was to investigate the effect of IL-4 on hMPV and to elucidate its mechanism of action. We found that hMPV infection promoted the expression of IL-4 in human bronchial epithelial cells. The replication of the virus was reduced using small interfering RNA knockdown of IL-4 expression, while the addition of exogenous recombinant human IL-4 to IL-4 knockdown cells restored viral replication ability. These results demonstrate that the expression of IL-4 is closely related to the replication of hMPV; moreover, further experiments revealed that IL-4 promotes the replication of hMPV through a mechanism dependent on the Janus kinase/signal transductor and transcription activator 6 signaling pathway. Therefore, anti-IL-4 strategies may be a promising avenue for the treatment of hMPV infection, representing an important breakthrough for children at risk from hMPV infection.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , Niño , Humanos , Células Epiteliales/metabolismo , Interleucina-4 , Quinasas Janus/metabolismo , Metapneumovirus/genética , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
20.
Parasit Vectors ; 16(1): 237, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461040

RESUMEN

BACKGROUND: Toxoplasma gondii infection can cause adverse pregnancy outcomes, such as recurrent abortion, fetal growth restriction and infants with malformations, among others. Decidual myeloid-derived suppressor cells (dMDSCs) are a novel immunosuppressive cell type at the fetal-maternal interface which play an important role in sustaining normal pregnancy that is related to their high expression of the inhibitory molecule leukocyte immunoglobulin-like receptor B4 (LILRB4). It has been reported that the expression of LILRB4 is downregulated on decidual macrophages after T. gondii infection, but it remains unknown whether T. gondii infection can induce dMDSC dysfunction resulting from the change in LILRB4 expression. METHODS: LILRB4-deficient (LILRB4-/-) pregnant mice infected with T. gondii with associated adverse pregnancy outcomes, and anti-LILRB4 neutralized antibodies-treated infected human dMDSCs were used in vivo and in vitro experiments, respectively. The aim was to investigate the effect of LILRB4 expression on dMDSC dysfunction induced by T. gondii infection. RESULTS: Toxoplasma gondii infection was observed to reduce STAT3 phosphorylation, resulting in decreased LILRB4 expression on dMDSCs. The levels of the main functional molecules (arginase-1 [Arg-1], interleukin-10 [IL-10]) and main signaling molecules (phosphorylated Src-homology 2 domain-containing protein tyrosine phosphatase [p-SHP2], phosphorylated signal transducer and activator of transcription 6 [p-STAT6]) in dMDSCs were all significantly reduced in human and mouse dMDSCs due to the decrease of LILRB4 expression induced by T. gondii infection. SHP-2 was found to directly bind to STAT6 and STAT6 to bind to the promoter of the Arg-1 and IL-10 genes during T. gondii infection. CONCLUSIONS: The downregulation of LILRB4 expression on dMDSCs induced by T. gondii infection could regulate the expression of Arg-1 and IL-10 via the SHP-2/STAT6 pathway, resulting in the dysfunction of dMDSCs, which might contribute to adverse outcomes during pregnancy by T. gondii infection.


Asunto(s)
Células Supresoras de Origen Mieloide , Toxoplasma , Toxoplasmosis , Animales , Femenino , Humanos , Ratones , Embarazo , Interleucina-10/genética , Interleucina-10/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Toxoplasma/genética , Toxoplasmosis/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...