Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914563

RESUMEN

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Asunto(s)
Unión Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/química , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Multimerización de Proteína , Modelos Moleculares , Transcripción Genética , Secuencia de Aminoácidos
2.
Angew Chem Int Ed Engl ; 63(32): e202404645, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38801173

RESUMEN

Phenotypic assays detect small-molecule bioactivity at functionally relevant cellular sites, and inherently cover a variety of targets and mechanisms of action. They can uncover new small molecule-target pairs and may give rise to novel biological insights. By means of an osteoblast differentiation assay which employs a Hedgehog (Hh) signaling agonist as stimulus and which monitors an endogenous marker for osteoblasts, we identified a pyrrolo[3,4-g]quinoline (PQ) pseudo-natural product (PNP) class of osteogenesis inhibitors. The most potent PQ, termed Tafbromin, impairs canonical Hh signaling and modulates osteoblast differentiation through binding to the bromodomain 2 of the TATA-box binding protein-associated factor 1 (TAF1). Tafbromin is the most selective TAF1 bromodomain 2 ligand and promises to be an invaluable tool for the study of biological processes mediated by TAF1(2) bromodomains.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/antagonistas & inhibidores , Humanos , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/antagonistas & inhibidores , Productos Biológicos/química , Productos Biológicos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Diferenciación Celular/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Estructura Molecular
3.
Nat Commun ; 15(1): 4128, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750015

RESUMEN

Mechanisms of functional cross-talk between global transcriptional repression and efficient DNA damage repair during genotoxic stress are poorly known. In this study, using human AF9 as representative of Super Elongation Complex (SEC) components, we delineate detailed mechanisms of these processes. Mechanistically, we describe that Poly-Serine domain-mediated oligomerization is pre-requisite for AF9 YEATS domain-mediated TFIID interaction-dependent SEC recruitment at the promoter-proximal region for release of paused RNA polymerase II. Interestingly, during genotoxic stress, CaMKII-mediated phosphorylation-dependent nuclear export of AF9-specific deacetylase HDAC5 enhances concomitant PCAF-mediated acetylation of K339 residue. This causes monomerization of AF9 and reduces TFIID interaction for transcriptional downregulation. Furthermore, the K339 acetylation-dependent enhanced AF9-DNA-PKc interaction leads to phosphorylation at S395 residue which reduces AF9-SEC interaction resulting in transcriptional downregulation and efficient repair of DNA damage. After repair, nuclear re-entry of HDAC5 reduces AF9 acetylation and restores its TFIID and SEC interaction to restart transcription.


Asunto(s)
Daño del ADN , Reparación del ADN , Histona Desacetilasas , Procesamiento Proteico-Postraduccional , Transcripción Genética , Humanos , Acetilación , Fosforilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/química , Multimerización de Proteína , Células HEK293 , Células HeLa , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/química
4.
Curr Opin Struct Biol ; 75: 102404, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35700575

RESUMEN

RNA polymerase II (Pol II)-mediated transcription in eukaryotic cells starts with assembly of preinitiation complex (PIC) on core promoter, a DNA sequence of ∼100 base pairs. The transcription PIC consists of Pol II and general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Previous structural studies focused on PIC assembled on TATA box promoters with TFIID replaced by its subunit, TATA box-binding protein (TBP). However, the megadalton TFIID complex is essential for promoter recognition, TBP loading onto promoter, and PIC assembly for almost all Pol II-mediated transcription, especially on the TATA-less promoters, which account for ∼85% of core promoters of human coding genes. The functions of TFIID could not be replaced by TBP. The recent breakthrough in structure determination of TFIID-based PIC complexes in different assembly stages revealed mechanistic insights into PIC assembly on TATA box and TATA-less promotes and provided a framework for further investigation of transcription initiation.


Asunto(s)
ARN Polimerasa II , Factor de Transcripción TFIID , Iniciación de la Transcripción Genética , Humanos , ARN Polimerasa II/química , TATA Box , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIID/química
5.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
6.
J Biol Chem ; 297(5): 101288, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634302

RESUMEN

The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B, and C. A 5TAF core complex can be assembled in vitro constituting a building block for the further assembly of either lobe A or B in TFIID. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. To better understand the role of TAF8 in TFIID, we have investigated the requirement of the different regions of TAF8 for the in vitro assembly of lobe B and C and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a region of TAF8 distinct from the histone fold domain important for assembling with the 5TAF core complex in lobe B. We also delineated four more regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, CRISPR/Cas9-mediated gene editing indicated that the 5TAF core-interacting TAF8 domain and the proline-rich domain of TAF8 that interacts with TAF2 are both required for mouse embryonic stem cell survival. Thus, our study defines distinct TAF8 regions involved in connecting TFIID lobe B to lobe C that appear crucial for TFIID function and consequent ESC survival.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Pliegue de Proteína , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Supervivencia Celular , Humanos , Ratones , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factores de Transcripción/química , Factores de Transcripción/genética
7.
J Biol Chem ; 297(5): 101326, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688663

RESUMEN

Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that is a therapeutic target in many cancers and inflammatory diseases. BRD4 plays important roles in transcription as an active kinase, which phosphorylates the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II), the proto-oncogene c-MYC, and transcription factors TAF7 and CDK9. BRD4 is also a passive scaffold that recruits transcription factors. Despite these well-established functions, there has been little characterization of BRD4's biophysical properties or its kinase activity. We report here that the 156 kD mouse BRD4 exists in an extended dimeric conformation with a sedimentation coefficient of ∼6.7 S and a high frictional ratio. Deletion of the conserved B motif (aa 503-548) disrupts BRD4's dimerization. BRD4 kinase activity maps to amino acids 351 to 598, which span bromodomain-2, the B motif, and the BID domain (BD2-B-BID) and contributes to the in vivo phosphorylation of its substrates. As further assessed by analytical ultracentrifugation, BRD4 directly binds purified Pol II CTD. Importantly, the conserved A motif of BRD4 is essential for phosphorylation of Pol II CTD, but not for phosphorylation of TAF7, mapping its binding site to the A motif. Peptides of the viral MLV integrase (MLVIN) protein and cellular histone lysine methyltransferase, NSD3, which have been shown by NMR to bind to the extra-terminal (ET) domain, also are phosphorylated by BRD4. Thus, BRD4 has multiple distinct substrate-binding sites and a common kinase domain. These results provide new insights into the structure and kinase function of BRD4.


Asunto(s)
Proteínas Nucleares/química , Proteínas Quinasas/química , Multimerización de Proteína , Factores de Transcripción/química , Secuencias de Aminoácidos , Animales , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Cuaternaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Science ; 372(6546)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33958484

RESUMEN

The 1.3-megadalton transcription factor IID (TFIID) is required for preinitiation complex (PIC) assembly and RNA polymerase II (Pol II)-mediated transcription initiation on almost all genes. The 26-subunit Mediator stimulates transcription and cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the Pol II C-terminal domain (CTD). We determined the structures of human Mediator in the Tail module-extended (at near-atomic resolution) and Tail-bent conformations and structures of TFIID-based PIC-Mediator (76 polypeptides, ~4.1 megadaltons) in four distinct conformations. PIC-Mediator assembly induces concerted reorganization (Head-tilting and Middle-down) of Mediator and creates a Head-Middle sandwich, which stabilizes two CTD segments and brings CTD to CDK7 for phosphorylation; this suggests a CTD-gating mechanism favorable for phosphorylation. The TFIID-based PIC architecture modulates Mediator organization and TFIIH stabilization, underscoring the importance of TFIID in orchestrating PIC-Mediator assembly.


Asunto(s)
Complejo Mediador/química , ARN Polimerasa II/química , Factor de Transcripción TFIID/química , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , ADN Helicasas/química , Proteínas de Unión al ADN/química , Humanos , Complejo Mediador/metabolismo , Subunidad 1 del Complejo Mediador/química , Modelos Moleculares , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
Protein Expr Purif ; 184: 105887, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33836240

RESUMEN

The general transcription factor TFIID is a multiprotein complex that is essential for specific transcription initiation by RNA polymerase II. It is composed of the TATA box-binding protein (TBP) and ~13 different TBP-associated factors (TAFs). Purification of TFIID free of other general transcription factors and coactivators is essential to analyze the transcription regulatory mechanisms in reconstituted systems in vitro. A breakthrough in TFIID purification was the generation of HeLa cell lines that express a FLAG epitope-tagged TBP subunit and immunopurification protocols with monoclonal anti-FLAG antibodies. Purification of TFIID from HeLa nuclear extracts generally required a two-step purification procedure involving phosphocellulose P11 chromatography followed by anti-flag M2 affinity purification (Chiang et al., 1993; Ge et al., 1996) [1,2]. Here we show first that the MED26 (CRSP70) coactivator subunit of Mediator co-purifies with TFIID in the above two-step protocol and interacts strongly with TFIID under high salt conditions. We further show that a MED26-free TFIID complex can be obtained by including a simple additional DE52 chromatography step following P11 fractionation. Thus, we demonstrate that MED26 strongly interacts with TFIID and recommend the use of a P11-DE52-M2 resin affinity three-step purification procedure to obtain MED26-free TFIID for analyzing Mediator-dependent transcription regulatory mechanisms in purified transcription systems in vitro.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Células HeLa , Humanos , Complejo Mediador/química , Complejo Mediador/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Factores Asociados con la Proteína de Unión a TATA/biosíntesis , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/aislamiento & purificación , Factor de Transcripción TFIID/biosíntesis , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/aislamiento & purificación
10.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33795473

RESUMEN

Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.


Asunto(s)
Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Factor de Transcripción TFIID/química , Iniciación de la Transcripción Genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Hormona Liberadora de Corticotropina/genética , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/química , Células HEK293 , Humanos , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Polimerasa II/química , Porcinos , Urocortinas/genética
11.
J Biol Chem ; 296: 100226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361159

RESUMEN

Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas Intrínsecamente Desordenadas/química , Complejo Correpresor Histona Desacetilasa y Sin3/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Factores de Transcripción/química , Factores de Transcripción p300-CBP/química , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
12.
Nat Commun ; 11(1): 4206, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826896

RESUMEN

Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains opaque. Here, we demonstrate that the extra-terminal (ET) domain of Taf14 (Taf14ET) recognizes a common motif in multiple transcriptional coactivator proteins from several nuclear complexes, including RSC, SWI/SNF, INO80, NuA3, TFIID, and TFIIF. Moreover, we show that such partner binding promotes liquid-liquid phase separation (LLPS) of Taf14ET, in a mechanism common to YEATS-associated ET domains (e.g., AF9ET) but not Bromo-associated ET domains from BET-family proteins. Thus, beyond identifying the molecular mechanism by which Taf14ET associates with many transcriptional regulators, our study suggests that Taf14 may function as a versatile nuclear hub that orchestrates transcriptional machineries to spatiotemporally regulate diverse cellular pathways.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Proteínas Portadoras , Proteínas de Ciclo Celular/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN , Epigenómica , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factores de Transcripción/metabolismo
13.
Epigenetics Chromatin ; 13(1): 24, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460824

RESUMEN

BACKGROUND: The YEATS domain is a highly conserved protein structure that interacts with acetylated and crotonylated lysine residues in N-terminal tails of histones. The budding yeast genome encodes three YEATS domain proteins (Taf14, Yaf9, and Sas5) that are all the subunits of different complexes involved in histone acetylation, gene transcription, and chromatin remodeling. As the strains deficient in all these three genes are inviable, it has been proposed that the YEATS domain is essential in yeast. In this study we investigate in more detail the requirement of YEATS domain proteins for yeast survival and the possible roles of Taf14 YEATS domain in the regulation of gene transcription. RESULTS: We found that YEATS domains are not essential for the survival of Saccharomyces cerevisiae cells. Although the full deletion of all YEATS proteins is lethal in yeast, we show that the viability of cells can be restored by the expression of the YEATS-less version of Taf14 protein. We also explore the in vivo functions of Taf14 protein and show that the primary role of its YEATS domain is to stabilize the transcription pre-initiation complex (PIC). Our results indicate that Taf14-mediated interactions become crucial for PIC formation in rpb9Δ cells, where the recruitment of TFIIF to the PIC is hampered. Although H3 K9 residue has been identified as the interaction site of the Taf14 YEATS domain in vitro, we found that it is not the only interaction target in vivo. CONCLUSIONS: Lethality of YEATS-deficient cells can be rescued by the expression of truncated Taf14 protein lacking the entire YEATS domain, indicating that the YEATS domains are not required for cell survival. The YEATS domain of Taf14 participates in PIC stabilization and acetylated/crotonylated H3K9 is not the critical target of the Taf14 YEATS domain in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión , Histonas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
14.
Nature ; 577(7792): 711-716, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969704

RESUMEN

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiones Promotoras Genéticas/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Sitios de Unión , ADN de Hongos/química , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
15.
Curr Opin Struct Biol ; 61: 17-24, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31751889

RESUMEN

TFIID is a large multiprotein assembly that serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II (Pol II). TFIID is involved in the recognition of the core promoter sequences and neighboring chromatin marks, and can interact with gene-specific activators and repressors. In order to obtain a better molecular and mechanistic understanding of the function of TFIID, its structure has been pursued for many years. However, the scarcity of TFIID and its highly flexible nature have made this pursuit very challenging. Recent breakthroughs, largely due to methodological advances in cryo-electron microscopy, have finally described the structure of this complex, both alone and engaged with core promoter DNA, revealing the functional significance of its conformational complexity in the process of core promoter recognition and initiation of Pol II transcription. Here, we review these recent structural insights and discuss their implications for our understanding of eukaryotic transcription initiation.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Regiones Promotoras Genéticas , Conformación Proteica , Factor de Transcripción TFIID/química , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo
16.
Biochemistry ; 59(2): 183-196, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31478652

RESUMEN

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.


Asunto(s)
Acetiltransferasas/metabolismo , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Animales , Dominio Catalítico , Línea Celular Tumoral , Coenzima A/química , Pruebas de Enzimas , Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Hidrolasas , Ratones Endogámicos C57BL , Conejos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
17.
Nat Struct Mol Biol ; 26(11): 1035-1043, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686052

RESUMEN

Transcription factor c-MYC is a potent oncoprotein; however, the mechanism of transcriptional regulation via MYC-protein interactions remains poorly understood. The TATA-binding protein (TBP) is an essential component of the transcription initiation complex TFIID and is required for gene expression. We identify two discrete regions mediating MYC-TBP interactions using structural, biochemical and cellular approaches. A 2.4 -Å resolution crystal structure reveals that human MYC amino acids 98-111 interact with TBP in the presence of the amino-terminal domain 1 of TBP-associated factor 1 (TAF1TAND1). Using biochemical approaches, we have shown that MYC amino acids 115-124 also interact with TBP independently of TAF1TAND1. Modeling reveals that this region of MYC resembles a TBP anchor motif found in factors that regulate TBP promoter loading. Site-specific MYC mutants that abrogate MYC-TBP interaction compromise MYC activity. We propose that MYC-TBP interactions propagate transcription by modulating the energetic landscape of transcription initiation complex assembly.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/química , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
18.
Nat Commun ; 10(1): 4925, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664040

RESUMEN

AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.


Asunto(s)
Carcinogénesis/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Histona Acetiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Cromatina/metabolismo , Regulación Leucémica de la Expresión Génica , Histona Acetiltransferasas/química , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/patología , Unión Proteica , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química
19.
Trends Cell Biol ; 29(9): 752-763, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300188

RESUMEN

Basal transcription factor TFIID connects transcription activation to the assembly of the RNA polymerase II preinitiation complex at the core promoter of genes. The mechanistic understanding of TFIID function and dynamics has been limited by the lack of high-resolution structures of the holo-TFIID complex. Recent cryo-electron microscopy studies of yeast and human TFIID complexes provide insight into the molecular organization and structural dynamics of this highly conserved transcription factor. Here, we discuss how these TFIID structures provide new paradigms for: (i) the dynamic recruitment of TFIID; (ii) the binding of TATA-binding protein (TBP) to promoter DNA; (iii) the multivalency of TFIID interactions with (co)activators, nucleosomes, or promoter DNA; and (iv) the opportunities for regulation of TBP turnover and promoter dynamics.


Asunto(s)
ADN/química , Regiones Promotoras Genéticas , Conformación Proteica , Factor de Transcripción TFIID/química , Microscopía por Crioelectrón , ADN/ultraestructura , Humanos , Modelos Moleculares , Schizosaccharomyces/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/ultraestructura , Activación Transcripcional
20.
Nat Commun ; 10(1): 1740, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988355

RESUMEN

Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes.


Asunto(s)
Multimerización de Proteína , Subunidades de Proteína/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Subunidades de Proteína/química , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA