Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194604, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32673655

RESUMEN

Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.


Asunto(s)
Cromatina/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Animales , Secuencia de Bases/genética , Secuencia Conservada/genética , Microscopía por Crioelectrón , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Evolución Molecular , Modelos Animales , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/genética , Transactivadores/ultraestructura , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/ultraestructura , Repeticiones WD40/genética
3.
Trends Cell Biol ; 29(9): 752-763, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300188

RESUMEN

Basal transcription factor TFIID connects transcription activation to the assembly of the RNA polymerase II preinitiation complex at the core promoter of genes. The mechanistic understanding of TFIID function and dynamics has been limited by the lack of high-resolution structures of the holo-TFIID complex. Recent cryo-electron microscopy studies of yeast and human TFIID complexes provide insight into the molecular organization and structural dynamics of this highly conserved transcription factor. Here, we discuss how these TFIID structures provide new paradigms for: (i) the dynamic recruitment of TFIID; (ii) the binding of TATA-binding protein (TBP) to promoter DNA; (iii) the multivalency of TFIID interactions with (co)activators, nucleosomes, or promoter DNA; and (iv) the opportunities for regulation of TBP turnover and promoter dynamics.


Asunto(s)
ADN/química , Regiones Promotoras Genéticas , Conformación Proteica , Factor de Transcripción TFIID/química , Microscopía por Crioelectrón , ADN/ultraestructura , Humanos , Modelos Moleculares , Schizosaccharomyces/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/ultraestructura , Activación Transcripcional
4.
Nat Commun ; 9(1): 4574, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385749

RESUMEN

The YEATS domain has been identified as a reader of histone acylation and more recently emerged as a promising anti-cancer therapeutic target. Here, we detail the structural mechanisms for π-π-π stacking involving the YEATS domains of yeast Taf14 and human AF9 and acylated histone H3 peptides and explore DNA-binding activities of these domains. Taf14-YEATS selects for crotonyllysine, forming π stacking with both the crotonyl amide and the alkene moiety, whereas AF9-YEATS exhibits comparable affinities to saturated and unsaturated acyllysines, engaging them through π stacking with the acyl amide. Importantly, AF9-YEATS is capable of binding to DNA, whereas Taf14-YEATS is not. Using a structure-guided approach, we engineered a mutant of Taf14-YEATS that engages crotonyllysine through the aromatic-aliphatic-aromatic π stacking and shows high selectivity for the crotonyl H3K9 modification. Our findings shed light on the molecular principles underlying recognition of acyllysine marks and reveal a previously unidentified DNA-binding activity of AF9-YEATS.


Asunto(s)
ADN/metabolismo , Código de Histonas , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Acilación , Cristalografía por Rayos X , ADN/ultraestructura , Humanos , Lisina/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/ultraestructura
5.
Mol Cell Biol ; 37(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28416636

RESUMEN

p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.


Asunto(s)
ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factor de Transcripción TFIID/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Microscopía por Crioelectrón , ADN/genética , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-mdm2/genética , Elementos de Respuesta/genética , Imagen Individual de Molécula , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/ultraestructura , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/ultraestructura , Proteína X Asociada a bcl-2/genética
6.
Nature ; 531(7596): 604-9, 2016 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-27007846

RESUMEN

The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.


Asunto(s)
Regiones Promotoras Genéticas/genética , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/ultraestructura , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato , TATA Box/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/ultraestructura , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIA/ultraestructura , Factor de Transcripción TFIID/química
7.
Cell ; 152(1-2): 120-31, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332750

RESUMEN

A mechanistic description of metazoan transcription is essential for understanding the molecular processes that govern cellular decisions. To provide structural insights into the DNA recognition step of transcription initiation, we used single-particle electron microscopy (EM) to visualize human TFIID with promoter DNA. This analysis revealed that TFIID coexists in two predominant and distinct structural states that differ by a 100 Å translocation of TFIID's lobe A. The transition between these structural states is modulated by TFIIA, as the presence of TFIIA and promoter DNA facilitates the formation of a rearranged state of TFIID that enables promoter recognition and binding. DNA labeling and footprinting, together with cryo-EM studies, were used to map the locations of TATA, Initiator (Inr), motif ten element (MTE), and downstream core promoter element (DPE) promoter motifs within the TFIID-TFIIA-DNA structure. The existence of two structurally and functionally distinct forms of TFIID suggests that the different conformers may serve as specific targets for the action of regulatory factors.


Asunto(s)
Regiones Promotoras Genéticas , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Transcripción Genética , Microscopía por Crioelectrón , ADN/genética , Humanos , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , TATA Box , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Structure ; 17(11): 1442-52, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19913479

RESUMEN

The general transcription factor IID (TFIID) is required for initiation of RNA polymerase II-dependent transcription at many eukaryotic promoters. TFIID comprises the TATA-binding protein (TBP) and several conserved TBP-associated factors (TAFs). Recognition of the core promoter by TFIID assists assembly of the preinitiation complex. Using cryo-electron microscopy in combination with methods for ab initio single-particle reconstruction and heterogeneity analysis, we have produced density maps of two conformational states of Schizosaccharomyces pombe TFIID, containing and lacking TBP. We report that TBP-binding is coupled to a massive histone-fold domain rearrangement. Moreover, docking of the TBP-TAF1(N-terminus) atomic structure to the TFIID map and reconstruction of a TAF-promoter DNA complex helps to account for TAF-dependent regulation of promoter-TBP and promoter-TAF interactions.


Asunto(s)
ADN/química , Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , Schizosaccharomyces/química , Factor de Transcripción TFIID/química , Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/ultraestructura
10.
Mol Cell ; 29(1): 81-91, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18206971

RESUMEN

Proper ovarian development requires the cell type-specific transcription factor TAF4b, a subunit of the core promoter recognition complex TFIID. We present the 35 A structure of a cell type-specific core promoter recognition complex containing TAF4b and TAF4 (4b/4-IID), which is responsible for directing transcriptional synergy between c-Jun and Sp1 at a TAF4b target promoter. As a first step toward correlating potential structure/function relationships of the prototypic TFIID versus 4b/4-IID, we have compared their 3D structures by electron microscopy and single-particle reconstruction. These studies reveal that TAF4b incorporation into TFIID induces an open conformation at the lobe involved in TFIIA and putative activator interactions. Importantly, this open conformation correlates with differential activator-dependent transcription and promoter recognition by 4b/4-IID. By combining functional and structural analysis, we find that distinct localized structural changes in a megadalton macromolecular assembly can significantly alter its activity and lead to a TAF4b-induced reprogramming of promoter specificity.


Asunto(s)
Microscopía Electrónica , Regiones Promotoras Genéticas/genética , Mapeo de Interacción de Proteínas , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Factor de Transcripción TFIID/ultraestructura , Linfocitos B , Línea Celular Tumoral , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Moleculares , Especificidad de Órganos , Conformación Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción Sp1/metabolismo , Relación Estructura-Actividad , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIA/ultraestructura , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA