Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(20): 11215-11226, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747934

RESUMEN

The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/metabolismo , Exonucleasas/química , ARN de Transferencia/genética , Proteínas Ribosómicas/genética , Alineación de Secuencia/métodos , Factores de Transcripción/metabolismo , Algoritmos , Animales , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/química , Bases de Datos Genéticas , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/química , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN/métodos , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción TFIII/química , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Sitio de Iniciación de la Transcripción
2.
Nat Struct Mol Biol ; 27(3): 229-232, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066962

RESUMEN

Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.


Asunto(s)
ARN Polimerasa III/química , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Factor de Transcripción TFIIIB/química , Factores de Transcripción/química , Transcripción Genética , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nature ; 553(7688): 301-306, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345637

RESUMEN

RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4-4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa II/química , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Moldes Genéticos , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química
4.
Nature ; 553(7688): 295-300, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345638

RESUMEN

RNA polymerase III (Pol III) and transcription factor IIIB (TFIIIB) assemble together on different promoter types to initiate the transcription of small, structured RNAs. Here we present structures of Pol III preinitiation complexes, comprising the 17-subunit Pol III and the heterotrimeric transcription factor TFIIIB, bound to a natural promoter in different functional states. Electron cryo-microscopy reconstructions, varying from 3.7 Å to 5.5 Å resolution, include two early intermediates in which the DNA duplex is closed, an open DNA complex, and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight, multivalent interaction between TFIIIB and promoter DNA, and explain how TFIIIB recruits Pol III. Together, TFIIIB and Pol III subunit C37 activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate the melting of double-stranded DNA, in a mechanism similar to that of the Pol II system.


Asunto(s)
Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Sitios de Unión , Dominio Catalítico , ADN/química , Modelos Biológicos , Modelos Moleculares , Unión Proteica , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química , Iniciación de la Transcripción Genética
5.
Nucleic Acids Res ; 46(3): 1157-1166, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29177422

RESUMEN

Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.


Asunto(s)
ADN de Hongos/química , ADN/química , Regulación Fúngica de la Expresión Génica , ARN Polimerasa III/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIIB/química , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Benzofenonas/química , Sitios de Unión , Clonación Molecular , Reactivos de Enlaces Cruzados/química , ADN/genética , ADN/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Radical Hidroxilo/química , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/química , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo
6.
Nat Commun ; 8(1): 130, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743884

RESUMEN

Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2-TBP-Bdp1 complex bound to DNA at 2.7 Å resolution, integrated with single-molecule FRET analysis and in vitro biochemical assays. Our study provides a structural insight on how Bdp1 is assembled into TFIIIB complexes, reveals structural and functional similarities between Bdp1 and Pol II factors TFIIA and TFIIF, and unravels essential interactions with DNA and with the upstream factor SNAPc. Furthermore, our data support the idea of a concerted mechanism involving TFIIIB and RNA polymerase III subunits for the closed to open pre-initiation complex transition.Transcription initiation by RNA polymerase III requires TFIIIB, a complex formed by Brf1/Brf2, TBP and Bdp1. Here, the authors describe the crystal structure of a Brf2-TBP-Bdp1 complex bound to a DNA promoter and characterize the role of Bdp1 in TFIIIB assembly and pre-initiation complex formation.


Asunto(s)
ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética
7.
FEBS Lett ; 590(10): 1488-97, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27112515

RESUMEN

RNA polymerase III-transcribed U6 snRNA genes have gene-external promoters that contain TATA boxes. U6 TATA sequences are bound by TFIIIB that in Drosophila contains the three subunits TBP, Brf1, and Bdp1. The overall structure of TFIIIB is still not well understood. We have therefore studied the mode of TFIIIB binding to DNA by site-specific protein-DNA photo-cross-linking. The results indicate that a portion of Brf1 is sandwiched between Bdp1 and TBP upstream of the TATA box. Furthermore, Bdp1 traverses the DNA under the N-terminal stirrup of TBP to interact with the DNA (and very likely Brf1) downstream of the TATA sequence.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Animales , Sitios de Unión , Línea Celular , Reactivos de Enlaces Cruzados , Proteínas de Drosophila/química , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , TATA Box , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIIB/química
8.
Cell ; 163(6): 1375-87, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638071

RESUMEN

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.


Asunto(s)
Oxidación-Reducción , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Transducción de Señal
9.
Mol Cell Biol ; 35(16): 2831-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055328

RESUMEN

The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.


Asunto(s)
ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Activación Transcripcional , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alineación de Secuencia
10.
Mol Cell Biol ; 34(3): 551-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24277937

RESUMEN

TFIIB-related factor Brf1 is essential for RNA polymerase (Pol) III recruitment and open-promoter formation in transcription initiation. We site specifically incorporated a nonnatural amino acid cross-linker into Brf1 to map its protein interaction targets in the preinitiation complex (PIC). Our cross-linking analysis in the N-terminal domain of Brf1 indicated a pattern of multiple protein interactions reminiscent of TFIIB in the Pol active-site cleft. In addition to the TFIIB-like protein interactions, the Brf1 cyclin repeat subdomain is in contact with the Pol III-specific C34 subunit. With site-directed hydroxyl radical probing, we further revealed the binding between Brf1 cyclin repeats and the highly conserved region connecting C34 winged-helix domains 2 and 3. In contrast to the N-terminal domain of Brf1, the C-terminal domain contains extensive binding sites for TBP and Bdp1 to hold together the TFIIIB complex on the promoter. Overall, the domain architecture of the PIC derived from our cross-linking data explains how individual structural subdomains of Brf1 integrate the protein network from the Pol III active center to the promoter for transcription initiation.


Asunto(s)
Mapas de Interacción de Proteínas , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión/genética , Western Blotting , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , ARN Polimerasa III/química , ARN Polimerasa III/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética
11.
Nat Struct Mol Biol ; 20(8): 1008-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23851461

RESUMEN

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Factores Asociados con la Proteína de Unión a TATA/química , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIID/química , Transcripción Genética/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cristalización , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo
12.
Science ; 333(6049): 1637-40, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21921198

RESUMEN

Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Humanos , Datos de Secuencia Molecular , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética
13.
Biochemistry ; 47(50): 13197-206, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19086269

RESUMEN

Transcription factor TFIIIB plays key roles in transcription by RNA polymerase III. Its three components (TBP, Brf1, and Bdp1) participate in crucial molecular events that include RNA polymerase recruitment, formation of the open initiation complex, and recycling of transcription. Although the details of the interaction among DNA, TBP, and Brf1 have been, in part, revealed through the crystal structure of their ternary complex, structural details of the Brf1-Bdp1 interaction are lacking. In this paper, nuclear magnetic resonance (NMR) is used to map the interaction interface between Bdp1 and Brf1 at single-amino acid resolution, using minimal functional segments of the two proteins. An NMR-derived structural model shows that the principal anchorage site of Brf1 is located on a convex surface of Bdp1 that encompasses helix 1 and helix 3 of its conserved SANT domain. The main Bdp1 anchorage site is provided by a small set of residues belonging to a Brf1 segment of residues 470-495.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Termodinámica , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo
14.
J Biol Chem ; 283(52): 36108-17, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18974046

RESUMEN

Yeast cells synthesize approximately 3-6 million molecules of tRNA every cell cycle at a rate of approximately 2-4 transcripts/gene/s. This high rate of transcription is achieved through many rounds of reinitiation by RNA polymerase (pol) III on stable DNA-bound complexes of the initiation factor TFIIIB. Studies in yeast have shown that the rate of reinitiation is increased by facilitated recycling, a process that involves the repeated reloading of the polymerase on the same transcription unit. However, when nutrients become limiting or stress conditions are encountered, RNA pol III transcription is rapidly repressed through the action of the conserved Maf1 protein. Here we examine the relationship between Maf1-mediated repression and facilitated recycling in a human RNA pol III in vitro system. Using an immobilized template transcription assay, we demonstrate that facilitated recycling is conserved from yeast to humans. We assessed the ability of recombinant human Maf1 to inhibit different steps in transcription before and after preinitiation complex assembly. We show that recombinant Maf1 can inhibit the recruitment of TFIIIB and RNA pol III to immobilized templates. However, RNA pol III bound to preinitiation complexes or in elongation complexes is protected from repression by Maf1 and can undergo several rounds of initiation. This indicates that recombinant Maf1 is unable to inhibit facilitated recycling. The data suggest that additional biochemical steps may be necessary for rapid Maf1-dependent repression of RNA pol III transcription.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , ARN Polimerasa III/metabolismo , Proteínas Represoras/química , Animales , Bovinos , Células HeLa , Humanos , Técnicas In Vitro , Modelos Biológicos , Modelos Genéticos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Represoras/metabolismo , Factores de Tiempo , Factor de Transcripción TFIIIB/química , Transcripción Genética
15.
Mol Cell Biol ; 28(12): 4204-14, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18391023

RESUMEN

PTEN, a tumor suppressor whose function is frequently lost in human cancers, possesses a lipid phosphatase activity that represses phosphatidylinositol 3-kinase (PI3K) signaling, controlling cell growth, proliferation, and survival. The potential for PTEN to regulate the synthesis of RNA polymerase (Pol) III transcription products, including tRNAs and 5S rRNAs, was evaluated. The expression of PTEN in PTEN-deficient cells repressed RNA Pol III transcription, whereas decreased PTEN expression enhanced transcription. Transcription repression by PTEN was uncoupled from PTEN-mediated effects on the cell cycle and was independent of p53. PTEN acts through its lipid phosphatase activity, inhibiting the PI3K/Akt/mTOR/S6K pathway to decrease transcription. PTEN, through the inactivation of mTOR, targets the TFIIIB complex, disrupting the association between TATA-binding protein and Brf1. Kinetic analysis revealed that PTEN initially induces a decrease in the serine phosphorylation of Brf1, leading to a selective reduction in the occupancy of all TFIIIB subunits on tRNA(Leu) genes, whereas prolonged PTEN expression results in the enhanced serine phosphorylation of Bdp1. Together, these results demonstrate a new class of genes regulated by PTEN through its ability to repress the activation of PI3K/Akt/mTOR/S6K signaling.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN/metabolismo , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/química , Ciclo Celular , Línea Celular Tumoral , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Fosfatidato Fosfatasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Mol Cell Biol ; 27(24): 8492-501, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17923679

RESUMEN

Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates approximately 48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements.


Asunto(s)
Dictyostelium/genética , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , ARN de Transferencia/genética , Retroelementos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Secuencias Repetidas Terminales/genética , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Mol Cell Biol ; 26(16): 5946-56, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880507

RESUMEN

The binding of Brf1 to the tetratricopeptide repeat (TPR)-containing transcription factor IIIC (TFIIIC) subunit (Tfc4) represents a rate-limiting step in the ordered assembly of the RNA polymerase III initiation factor TFIIIB. Tfc4 contains multiple binding sites for Brf1 within its amino terminus and adjacent TPR arrays, but the access of Brf1 to these sites is limited by autoinhibition. Moreover, the Brf1 binding sites in Tfc4 overlap with sites important for the subsequent recruitment of another TFIIIB subunit, Bdp1, implying that repositioning of Brf1 is required after its initial interaction with Tfc4. As a starting point for dissecting the steps in TFIIIC-directed assembly of TFIIIB, we conducted yeast two-hybrid screens of Brf1 peptide libraries against different TPR-containing Tfc4 fragments. Short, biochemically active peptides were identified in three distinct regions of Brf1. Two peptides defined conserved but distal regions of Brf1 that participate in stable binding of Brf1 to TFIIIC-DNA. Remarkably, a third peptide that binds specifically to TPR6-9 of Tfc4 was found to promote the formation of both TFIIIC-DNA and Brf1-TFIIIC-DNA complexes and to reduce the mobility of these complexes in native gels. The data are consistent with this peptide causing a conformational change in TFIIIC that overcomes Tfc4 autoinhibition of Brf1 binding and suggest a structural model for the Brf1-Tfc4 interaction.


Asunto(s)
Péptidos/metabolismo , Subunidades de Proteína/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción TFIII/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , ADN de Hongos/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIIIB/química , Factores de Transcripción TFIII/química , Técnicas del Sistema de Dos Híbridos
18.
J Biol Chem ; 281(20): 14321-9, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16551611

RESUMEN

The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/química , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/farmacología , ADN/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/fisiología
19.
Biol Chem ; 387(3): 277-84, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16542149

RESUMEN

The human gene BDP1, localized on chromosome 5q13 in close proximity to the spinal muscular atrophy determining gene SMN, encodes a large protein consisting of 2254 amino acids (aa). In the first third of the gene, the subunit of the RNA polymerase III (Pol III) transcription factor complex (TFIIIB alpha/beta) is encoded. To further characterize the function of BDP1, we carried out a yeast two-hybrid screen using various parts of BDP1. With the clone BDP1-(1-640) we identified a novel interaction partner, ZNF297B. The ZNF297B gene is localized on chromosome 9q24 and encodes a zinc finger protein of 467 aa possessing the typical structure of a transcription factor. The interaction found in yeast was confirmed by co-immunoprecipitation and refined to the N-terminal region of ZNF297B-(1-127) containing the BTB/POZ domain and the N-terminal end of BDP1-(1-299). The ZNF297B transcript is 5.7 kb in length and ubiquitously expressed, with highest levels found in muscles. Immunofluorescence staining revealed a speckled pattern in the nuclei of HEK293 cells. Due to the essential role of BDP1 in Pol III transcription, we propose that ZNF297B may also regulate these transcriptional pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Secuencia de Bases , Cromosomas Humanos Par 9/genética , Cromosomas Humanos Par 9/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Inmunoprecipitación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética
20.
J Biol Chem ; 281(15): 10461-72, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16461347

RESUMEN

Transcription from the yeast SNR6 (U6 small nuclear RNA) chromatin, a gene transcribed by the enzyme RNA polymerase III, depends on its transcription factor IIIC (TFIIIC) and the promoter elements (the intragenic box A and box B located downstream to its terminator) to which TFIIIC binds. The genes transcribed by polymerase III generally lack the upstream promoter elements where TFIIIC is known to recruit the transcription initiation factor TFIIIB. The TFIIIC-dependent chromatin remodeling of the gene in vitro that involves translational positioning of a nucleosome between boxes A and B is found to be essential for its transcriptional activation. We show here that the role of TFIIIC is not limited to the recruitment of TFIIIB on chromatin templates. The pre-binding of TFIIIB to the SNR6 TATA box in the upstream gene region does not alleviate TFIIIC requirement for transcriptional activation of the chromatin. Binding of TFIIIC to an array of pre-positioned nucleosomes results in an upward shift of the single nucleosome between boxes A and B. The approximately 40-bp shift of this nucleosome in the 3' to 5' direction leads to increased nuclease sensitivity of the approximately 40-bp DNA 3' to the upstream TATA box. Further chromatin remodeling accompanies the binding of TFIIIB in the next step. This two-step remodeling mechanism using the basal factors of the gene yields high transcription levels and generates a chromatin structure similar to that reported for the gene in vivo.


Asunto(s)
Cromatina/química , Regulación Fúngica de la Expresión Génica , Nucleosomas/química , ARN Nuclear Pequeño/química , Activación Transcripcional , Adenosina Trifosfato/química , Animales , Sitios de Unión , Cromatina/metabolismo , ADN/química , Drosophila , Proteínas Fúngicas/química , Genes Fúngicos , Modelos Genéticos , Nucleosomas/metabolismo , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Biosíntesis de Proteínas , Proteínas Recombinantes de Fusión/química , Factor de Transcripción TFIIIB/química , Factores de Transcripción TFIII/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA