Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 288(43): 31115-26, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019519

RESUMEN

The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.


Asunto(s)
Antibacterianos/farmacología , Factor de Transcripción de AraC/antagonistas & inhibidores , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Infecciones por Enterobacteriaceae/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Animales , Antibacterianos/química , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Citrobacter rodentium/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/patología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Intestinos/microbiología , Intestinos/patología , Ratones , Estructura Terciaria de Proteína , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
J Biomol Screen ; 18(5): 588-98, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23364515

RESUMEN

Protein members of the AraC family of bacterial transcriptional activators have great promise as targets for the development of novel antibacterial agents. Here, we describe an in vivo high-throughput screen to identify inhibitors of the AraC family activator protein RhaS. The screen used two Escherichia coli reporter fusions: one to identify potential RhaS inhibitors and a second to eliminate nonspecific inhibitors from consideration. One compound with excellent selectivity, OSSL_051168, was chosen for further study. OSSL_051168 inhibited in vivo transcription activation by the RhaS DNA-binding domain to the same extent as the full-length protein, indicating that this domain was the target of its inhibition. Growth curves showed that OSSL_051168 did not affect bacterial cell growth at the concentrations used in this study. In vitro DNA-binding assays with purified protein suggest that OSSL_051168 inhibits DNA binding by RhaS. In addition, we found that it inhibits DNA binding by a second AraC family protein, RhaR, which shares 30% amino acid identity with RhaS. OSSL_051168 did not have a significant impact on DNA binding by the non-AraC family proteins CRP and LacI, suggesting that the inhibition is likely specific for RhaS, RhaR, and possibly additional AraC family activator proteins.


Asunto(s)
Antibacterianos/aislamiento & purificación , Factor de Transcripción de AraC/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Quinolinas/aislamiento & purificación , Antibacterianos/química , Antibacterianos/farmacología , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , ADN Bacteriano/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Familia de Multigenes , Unión Proteica/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/análisis , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...