Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914563

RESUMEN

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Asunto(s)
Unión Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/química , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Multimerización de Proteína , Modelos Moleculares , Transcripción Genética , Secuencia de Aminoácidos
2.
Nature ; 625(7994): 345-351, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057661

RESUMEN

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Asunto(s)
Degeneración Lobar Frontotemporal , Factores Asociados con la Proteína de Unión a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Microscopía por Crioelectrón , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/complicaciones , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
3.
Nat Struct Mol Biol ; 30(8): 1141-1152, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386215

RESUMEN

Large heteromeric multiprotein complexes play pivotal roles at every step of gene expression in eukaryotic cells. Among them, the 20-subunit basal transcription factor TFIID nucleates the RNA polymerase II preinitiation complex at gene promoters. Here, by combining systematic RNA-immunoprecipitation (RIP) experiments, single-molecule imaging, proteomics and structure-function analyses, we show that human TFIID biogenesis occurs co-translationally. We discovered that all protein heterodimerization steps happen during protein synthesis. We identify TAF1-the largest protein in the complex-as a critical factor for TFIID assembly. TAF1 acts as a flexible scaffold that drives the co-translational recruitment of TFIID submodules preassembled in the cytoplasm. Altogether, our data suggest a multistep hierarchical model for TFIID biogenesis that culminates with the co-translational assembly of the complex onto the nascent TAF1 polypeptide. We envision that this assembly strategy could be shared with other large heteromeric protein complexes.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Humanos , Núcleo Celular/metabolismo , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/metabolismo
4.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106137

RESUMEN

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción/metabolismo , TATA Box , Proteína de Unión a TATA-Box/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/química , Adenosina Trifosfato/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química
5.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
6.
J Biol Chem ; 297(5): 101288, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634302

RESUMEN

The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B, and C. A 5TAF core complex can be assembled in vitro constituting a building block for the further assembly of either lobe A or B in TFIID. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. To better understand the role of TAF8 in TFIID, we have investigated the requirement of the different regions of TAF8 for the in vitro assembly of lobe B and C and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a region of TAF8 distinct from the histone fold domain important for assembling with the 5TAF core complex in lobe B. We also delineated four more regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, CRISPR/Cas9-mediated gene editing indicated that the 5TAF core-interacting TAF8 domain and the proline-rich domain of TAF8 that interacts with TAF2 are both required for mouse embryonic stem cell survival. Thus, our study defines distinct TAF8 regions involved in connecting TFIID lobe B to lobe C that appear crucial for TFIID function and consequent ESC survival.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Pliegue de Proteína , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Supervivencia Celular , Humanos , Ratones , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factores de Transcripción/química , Factores de Transcripción/genética
7.
J Biol Chem ; 297(5): 101326, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688663

RESUMEN

Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that is a therapeutic target in many cancers and inflammatory diseases. BRD4 plays important roles in transcription as an active kinase, which phosphorylates the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II), the proto-oncogene c-MYC, and transcription factors TAF7 and CDK9. BRD4 is also a passive scaffold that recruits transcription factors. Despite these well-established functions, there has been little characterization of BRD4's biophysical properties or its kinase activity. We report here that the 156 kD mouse BRD4 exists in an extended dimeric conformation with a sedimentation coefficient of ∼6.7 S and a high frictional ratio. Deletion of the conserved B motif (aa 503-548) disrupts BRD4's dimerization. BRD4 kinase activity maps to amino acids 351 to 598, which span bromodomain-2, the B motif, and the BID domain (BD2-B-BID) and contributes to the in vivo phosphorylation of its substrates. As further assessed by analytical ultracentrifugation, BRD4 directly binds purified Pol II CTD. Importantly, the conserved A motif of BRD4 is essential for phosphorylation of Pol II CTD, but not for phosphorylation of TAF7, mapping its binding site to the A motif. Peptides of the viral MLV integrase (MLVIN) protein and cellular histone lysine methyltransferase, NSD3, which have been shown by NMR to bind to the extra-terminal (ET) domain, also are phosphorylated by BRD4. Thus, BRD4 has multiple distinct substrate-binding sites and a common kinase domain. These results provide new insights into the structure and kinase function of BRD4.


Asunto(s)
Proteínas Nucleares/química , Proteínas Quinasas/química , Multimerización de Proteína , Factores de Transcripción/química , Secuencias de Aminoácidos , Animales , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Cuaternaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Protein Expr Purif ; 184: 105887, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33836240

RESUMEN

The general transcription factor TFIID is a multiprotein complex that is essential for specific transcription initiation by RNA polymerase II. It is composed of the TATA box-binding protein (TBP) and ~13 different TBP-associated factors (TAFs). Purification of TFIID free of other general transcription factors and coactivators is essential to analyze the transcription regulatory mechanisms in reconstituted systems in vitro. A breakthrough in TFIID purification was the generation of HeLa cell lines that express a FLAG epitope-tagged TBP subunit and immunopurification protocols with monoclonal anti-FLAG antibodies. Purification of TFIID from HeLa nuclear extracts generally required a two-step purification procedure involving phosphocellulose P11 chromatography followed by anti-flag M2 affinity purification (Chiang et al., 1993; Ge et al., 1996) [1,2]. Here we show first that the MED26 (CRSP70) coactivator subunit of Mediator co-purifies with TFIID in the above two-step protocol and interacts strongly with TFIID under high salt conditions. We further show that a MED26-free TFIID complex can be obtained by including a simple additional DE52 chromatography step following P11 fractionation. Thus, we demonstrate that MED26 strongly interacts with TFIID and recommend the use of a P11-DE52-M2 resin affinity three-step purification procedure to obtain MED26-free TFIID for analyzing Mediator-dependent transcription regulatory mechanisms in purified transcription systems in vitro.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Células HeLa , Humanos , Complejo Mediador/química , Complejo Mediador/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Factores Asociados con la Proteína de Unión a TATA/biosíntesis , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/aislamiento & purificación , Factor de Transcripción TFIID/biosíntesis , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/aislamiento & purificación
9.
J Biol Chem ; 296: 100226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361159

RESUMEN

Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas Intrínsecamente Desordenadas/química , Complejo Correpresor Histona Desacetilasa y Sin3/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Factores de Transcripción/química , Factores de Transcripción p300-CBP/química , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
10.
Nucleic Acids Res ; 48(21): 11880-11889, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33068411

RESUMEN

The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold. In particular, an association has recently emerged between aggregation and the assembly of prion-like proteins in RNA-rich complexes, associated with both physiological and pathological events. Here, we discuss the historical rising of the concept of prion-like domains, their relation to RNA and their role in protein aggregation. As a paradigmatic example, we present the case study of TDP-43, an RNA-binding prion-like protein associated with amyotrophic lateral sclerosis. Through this example, we demonstrate how the current definition of prions has incorporated quite different concepts making the meaning of the term richer and more stimulating. An important message that emerges from our analysis is the dual role of RNA in protein aggregation, making RNA, that has been considered for many years a 'silent presence' or the 'stone guest' of protein aggregation, an important component of the process.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Priones/genética , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , ARN/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Priones/química , Priones/metabolismo , Agregado de Proteínas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo
11.
Nat Cell Biol ; 22(10): 1187-1196, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929202

RESUMEN

Membraneless organelles or condensates form through liquid-liquid phase separation1-4, which is thought to underlie gene transcription through condensation of the large-scale nucleolus5-7 or in smaller assemblies known as transcriptional condensates8-11. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs12,13. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.


Asunto(s)
Nucléolo Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Orgánulos/metabolismo , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Animales , Nucléolo Celular/genética , Citoplasma/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Ratones , Orgánulos/genética , Transición de Fase , ARN Polimerasa II/química , ARN Polimerasa II/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética
12.
Nature ; 577(7792): 711-716, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969704

RESUMEN

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiones Promotoras Genéticas/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Sitios de Unión , ADN de Hongos/química , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
13.
Biochemistry ; 59(2): 183-196, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31478652

RESUMEN

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.


Asunto(s)
Acetiltransferasas/metabolismo , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Animales , Dominio Catalítico , Línea Celular Tumoral , Coenzima A/química , Pruebas de Enzimas , Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Hidrolasas , Ratones Endogámicos C57BL , Conejos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
14.
Nat Struct Mol Biol ; 26(11): 1035-1043, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686052

RESUMEN

Transcription factor c-MYC is a potent oncoprotein; however, the mechanism of transcriptional regulation via MYC-protein interactions remains poorly understood. The TATA-binding protein (TBP) is an essential component of the transcription initiation complex TFIID and is required for gene expression. We identify two discrete regions mediating MYC-TBP interactions using structural, biochemical and cellular approaches. A 2.4 -Å resolution crystal structure reveals that human MYC amino acids 98-111 interact with TBP in the presence of the amino-terminal domain 1 of TBP-associated factor 1 (TAF1TAND1). Using biochemical approaches, we have shown that MYC amino acids 115-124 also interact with TBP independently of TAF1TAND1. Modeling reveals that this region of MYC resembles a TBP anchor motif found in factors that regulate TBP promoter loading. Site-specific MYC mutants that abrogate MYC-TBP interaction compromise MYC activity. We propose that MYC-TBP interactions propagate transcription by modulating the energetic landscape of transcription initiation complex assembly.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/química , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
15.
Nat Commun ; 10(1): 4925, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664040

RESUMEN

AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.


Asunto(s)
Carcinogénesis/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Histona Acetiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Cromatina/metabolismo , Regulación Leucémica de la Expresión Génica , Histona Acetiltransferasas/química , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/patología , Unión Proteica , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química
16.
Nat Commun ; 10(1): 1740, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988355

RESUMEN

Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes.


Asunto(s)
Multimerización de Proteína , Subunidades de Proteína/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Subunidades de Proteína/química , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
17.
Anal Chem ; 91(7): 4472-4478, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817130

RESUMEN

Cross-linking mass spectrometry has become an important approach for studying protein structures and protein-protein interactions. The amino acid compositions of some protein regions impede the detection of cross-linked residues, although it would yield invaluable information for protein modeling. Here, we report on a sequential-digestion strategy with trypsin and elastase to penetrate regions with a low density of trypsin-cleavage sites. We exploited intrinsic substrate-recognition properties of elastase to specifically target larger tryptic peptides. Our application of this protocol to the TAF4-12 complex allowed us to identify cross-links in previously inaccessible regions.


Asunto(s)
Elastasa Pancreática/química , Factores Asociados con la Proteína de Unión a TATA/análisis , Factor de Transcripción TFIID/análisis , Tripsina/química , Animales , Cromatografía Liquida , Reactivos de Enlaces Cruzados/química , Humanos , Péptidos/análisis , Péptidos/química , Proteolisis , Células Sf9 , Spodoptera , Succinimidas/química , Factores Asociados con la Proteína de Unión a TATA/química , Espectrometría de Masas en Tándem/métodos , Factor de Transcripción TFIID/química
18.
Genes Genet Syst ; 94(1): 51-59, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30905891

RESUMEN

Transcription factor II D (TFIID), a multiprotein complex consisting of TATA-binding protein (TBP) and 13-14 TBP-associated factors (Tafs), plays a central role in transcription and regulates nearly all class II genes. The N-terminal domain of Taf1p (TAND) can be divided into two subdomains, TAND1 and TAND2, which bind to the concave and convex surfaces of TBP, respectively. The interaction between TAND and TBP is thought to be regulated by TFIIA, activators and/or DNA during transcriptional activation, as the TAND1-bound form of TBP cannot bind to the TATA box. We previously demonstrated that Drosophila TAND1 binds to TBP with a much stronger affinity than yeast TAND1 and that the expression levels of full-length chimeric Taf1p, whose TAND1 is replaced with the Drosophila counterpart, can be varied in vivo by substituting several methionine residues downstream of TAND2 with alanine residues in various combinations. In this study, we examined the transcriptional activation of the GAL1-lacZ reporter or endogenous genes such as RNR3 or GAL1 in yeast cells expressing various levels of full-length chimeric Taf1p. The results showed that the substitution of TAND1 with the Drosophila counterpart in yeast TFIID weakened the transcriptional activation of GAL1-lacZ and RNR3 but not that of GAL1. These findings strongly support a model in which TBP must be released efficiently from TAND1 within TFIID upon transcriptional activation.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Activación Transcripcional , Animales , Drosophila melanogaster , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Dominios Proteicos , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
19.
Nucleic Acids Res ; 47(6): 2793-2806, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30649478

RESUMEN

The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.


Asunto(s)
Adenosina Trifosfatasas/fisiología , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Factores Asociados con la Proteína de Unión a TATA/fisiología , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Catálisis , ADN de Hongos/química , Escherichia coli , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo
20.
Nat Struct Mol Biol ; 25(12): 1119-1127, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30510221

RESUMEN

TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID complexes with unique subunit compositions exist and several TFIID subunits are shared with other complexes, thereby conveying precise cellular control of subunit allocation and functional assembly of this essential transcription factor. However, the molecular mechanisms that underlie the regulation of TFIID remain poorly understood. Here we use quantitative proteomics to examine TFIID submodules and assembly mechanisms in human cells. Structural and mutational analysis of the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions that are crucial for TFIID integrity and for allocation of TAF9 to TFIID or the Spt-Ada-Gcn5 acetyltransferase (SAGA) co-activator complex. We discover a key checkpoint function for the chaperonin CCT, which specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9 and ultimate holo-TFIID formation. Our findings illustrate at the molecular level how multisubunit complexes are generated within the cell via mechanisms that involve checkpoint decisions facilitated by a chaperone.


Asunto(s)
Chaperonina con TCP-1/fisiología , Modelos Moleculares , Factor de Transcripción TFIID/química , Chaperonina con TCP-1/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Espectrometría de Masas , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...