Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Biomol NMR Assign ; 17(2): 199-203, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368134

RESUMEN

Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5' untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.


Asunto(s)
Factores Eucarióticos de Iniciación , Factores de Iniciación de Péptidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nucleic Acids Res ; 51(4): 1803-1822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651285

RESUMEN

Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.


Asunto(s)
Factores Eucarióticos de Iniciación , Humanos , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Factores Eucarióticos de Iniciación/antagonistas & inhibidores , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Síndrome de Shwachman-Diamond/terapia
3.
Biophys J ; 121(16): 3049-3060, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35841142

RESUMEN

Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Proteínas Intrínsecamente Desordenadas , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Fosforilación , Unión Proteica
4.
Nature ; 606(7914): 603-608, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676484

RESUMEN

Mitoribosomes are essential for the synthesis and maintenance of bioenergetic proteins. Here we use cryo-electron microscopy to determine a series of the small mitoribosomal subunit (SSU) intermediates in complex with auxiliary factors, revealing a sequential assembly mechanism. The methyltransferase TFB1M binds to partially unfolded rRNA h45 that is promoted by RBFA, while the mRNA channel is blocked. This enables binding of METTL15 that promotes further rRNA maturation and a large conformational change of RBFA. The new conformation allows initiation factor mtIF3 to already occupy the subunit interface during the assembly. Finally, the mitochondria-specific ribosomal protein mS37 (ref. 1) outcompetes RBFA to complete the assembly with the SSU-mS37-mtIF3 complex2 that proceeds towards mtIF2 binding and translation initiation. Our results explain how the action of step-specific factors modulate the dynamic assembly of the SSU, and adaptation of a unique protein, mS37, links the assembly to initiation to establish the catalytic human mitoribosome.


Asunto(s)
Ribosomas Mitocondriales , Subunidades Ribosómicas Pequeñas , Humanos , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 50(10): 5424-5442, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35552740

RESUMEN

Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.


Asunto(s)
Células Eucariotas/metabolismo , Factores Eucarióticos de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Factor 4G Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas
6.
RNA ; 28(1): 27-35, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772789

RESUMEN

Many biomolecular condensates are thought to form via liquid-liquid phase separation (LLPS) of multivalent macromolecules. For those that form through this mechanism, our understanding has benefitted significantly from biochemical reconstitutions of key components and activities. Reconstitutions of RNA-based condensates to date have mostly been based on relatively simple collections of molecules. However, proteomics and sequencing data indicate that natural RNA-based condensates are enriched in hundreds to thousands of different components, and genetic data suggest multiple interactions can contribute to condensate formation to varying degrees. In this Perspective, we describe recent progress in understanding RNA-based condensates through different levels of biochemical reconstitutions as a means to bridge the gap between simple in vitro reconstitution and cellular analyses. Complex reconstitutions provide insight into the formation, regulation, and functions of multicomponent condensates. We focus on two RNA-protein condensate case studies: stress granules and RNA processing bodies (P bodies), and examine the evidence for cooperative interactions among multiple components promoting LLPS. An important concept emerging from these studies is that composition and stoichiometry regulate biochemical activities within condensates. Based on the lessons learned from stress granules and P bodies, we discuss forward-looking approaches to understand the thermodynamic relationships between condensate components, with the goal of developing predictive models of composition and material properties, and their effects on biochemical activities. We anticipate that quantitative reconstitutions will facilitate understanding of the complex thermodynamics and functions of diverse RNA-protein condensates.


Asunto(s)
Condensados Biomoleculares/química , Factores Eucarióticos de Iniciación/química , Cuerpos de Procesamiento/química , Proteínas de Unión al ARN/química , ARN/química , Gránulos de Estrés/química , Animales , Condensados Biomoleculares/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Estadísticos , Cuerpos de Procesamiento/metabolismo , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Gránulos de Estrés/metabolismo , Termodinámica
7.
Nat Commun ; 11(1): 5003, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024099

RESUMEN

Recognition of a start codon by the initiator aminoacyl-tRNA determines the reading frame of messenger RNA (mRNA) translation by the ribosome. In eukaryotes, the GTPase eIF5B collaborates in the correct positioning of the initiator Met-tRNAiMet on the ribosome in the later stages of translation initiation, gating entrance into elongation. Leveraging the long residence time of eIF5B on the ribosome recently identified by single-molecule fluorescence measurements, we determine the cryoEM structure of the naturally long-lived ribosome complex with eIF5B and Met-tRNAiMet immediately before transition into elongation. The structure uncovers an unexpected, eukaryotic specific and dynamic fidelity checkpoint implemented by eIF5B in concert with components of the large ribosomal subunit.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Grandes/metabolismo , Acilación , Anticodón , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/genética , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/genética , Subunidades Ribosómicas Grandes de Eucariotas , Subunidades Ribosómicas Pequeñas de Eucariotas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
8.
Phys Chem Chem Phys ; 22(5): 2938-2948, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31951234

RESUMEN

Eukaryotic translation initiation factor 4E binding protein 2 (4E-BP2) is an inhibitor of mRNA cap-dependent translations. Wild-type (WT) 4E-BP2 is intrinsically disordered under physiological conditions, while phosphorylation converts the disordered fragments 18-62 into a four-stranded ß-sheet structure. The regulation mechanism of phosphorylation on 4E-BP2 still remains ambiguous. In this study, replica-exchange molecular dynamics (REMD) simulations were utilized to sample the conformation spaces of WT, phosphorylated WT (pWT), and phosphorylated mutated (pMT) 4E-BP2. Starting from extended structures, the folded structures were only observed in pWT simulations. The folding pathway shows that the folded structures of pWT are formed in the order of ß1/ß4, ß3, and ß2. The formation of ß-turns on pWT, which are driven by hydrogen bonds between the phosphorylated residues and adjacent residues, are the rate-limiting steps in the folding process. The long-range electrostatic interactions contribute toward the stabilization of the folded structures. Moreover, the disruption of ß-turn structures induced by mutations would prevent the folding of pMT 4E-BP2. Our finding is helpful in understanding the regulation of the structural ensembles of intrinsically disordered proteins.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Secuencia de Aminoácidos , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Humanos , Enlace de Hidrógeno , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Conformación Proteica en Lámina beta , Pliegue de Proteína , Termodinámica
9.
Proc Natl Acad Sci U S A ; 117(3): 1429-1437, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31900355

RESUMEN

Translation initiation controls protein synthesis by regulating the delivery of the first aminoacyl-tRNA to messenger RNAs (mRNAs). In eukaryotes, initiation is sophisticated, requiring dozens of protein factors and 2 GTP-regulated steps. The GTPase eIF5B gates progression to elongation during the second GTP-regulated step. Using electron cryomicroscopy (cryo-EM), we imaged an in vitro initiation reaction which is set up with purified yeast components and designed to stall with eIF5B and a nonhydrolyzable GTP analog. A high-resolution reconstruction of a "dead-end" intermediate at 3.6 Šallowed us to visualize eIF5B in its ribosome-bound conformation. We identified a stretch of residues in eIF5B, located close to the γ-phosphate of GTP and centered around the universally conserved tyrosine 837 (Saccharomyces cerevisiae numbering), that contacts the catalytic histidine of eIF5B (H480). Site-directed mutagenesis confirmed the essential role that these residues play in regulating ribosome binding, GTP hydrolysis, and translation initiation both in vitro and in vivo. Our results illustrate how eIF5B transmits the presence of a properly delivered initiator aminoacyl-tRNA at the P site to the distant GTPase center through interdomain communications and underscore the importance of the multidomain architecture in translation factors to sense and communicate ribosomal states.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Hidrólisis , Mutagénesis Sitio-Dirigida , Unión Proteica , Ribosomas/metabolismo , Saccharomyces cerevisiae
10.
J Chem Theory Comput ; 16(1): 800-810, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31774674

RESUMEN

Upon phosphorylation of specific sites, eukaryotic translation initiation factor 4E (eIF4E) binding protein 2 (4E-BP2) undergoes a fundamental structural transformation from a disordered state to a four-stranded ß-sheet, leading to decreased binding affinity for its partner. This change reflects the significant effects of phosphate groups on the underlying energy landscapes of proteins. In this study, we combine high-temperature molecular dynamics simulations and discrete path sampling to construct energy landscapes for a doubly phosphorylated 4E-BP218-62 and two mutants (a single site mutant D33K and a double mutant Y54A/L59A). The potential and free energy landscapes for these three systems are multifunneled with the folded state and several alternative states lying close in energy, suggesting perhaps a multifunneled and multifunctional protein. Hydrogen bonds between phosphate groups and other residues not only stabilize these low-lying conformations to different extents but also play an important role in interstate transitions. From the energy landscape perspective, our results explain some interesting experimental observations, including the low stability of doubly phosphorylated 4E-BP2 and its moderate binding to eIF4E and the inability of phosphorylated Y54A/L59A to fold.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Termodinámica , Factores Eucarióticos de Iniciación/genética , Calor , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Fosforilación , Mutación Puntual , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica
11.
Biochemistry (Mosc) ; 84(10): 1143-1150, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31694510

RESUMEN

Mitochondria are essential organelles of eukaryotic cell that provide its respiratory function by means of the electron transfer chain. Expression of mitochondrial genes is organized in a bacterial-like manner; however multiple evolutionary differences are observed between the two systems, including translation initiation machinery. This review is dedicated to the mitochondrial translation initiation factor 3 (IF3mt), which plays a key role in the protein synthesis in mitochondria. Involvement of IF3mt in human health and disease is discussed.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Humanos , Mitocondrias/metabolismo
12.
Nature ; 573(7775): 605-608, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534220

RESUMEN

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Enzimática , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Microscopía Fluorescente , Unión Proteica , Conformación Proteica , Ribosomas/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell ; 75(4): 725-740.e6, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31324450

RESUMEN

Despite the relevance of Argonaute proteins in RNA silencing, little is known about the structural steps of small RNA loading to form RNA-induced silencing complexes (RISCs). We report the 1.9 Å crystal structure of human Argonaute4 with guide RNA. Comparison with the previously determined apo structure of Neurospora crassa QDE2 revealed that the PIWI domain has two subdomains. Binding of guide RNA fastens the subdomains, thereby rearranging the active-site residues and increasing the affinity for TNRC6 proteins. We also identified two water pockets beneath the nucleic acid-binding channel that appeared to stabilize the mature RISC. Indeed, mutating the water-pocket residues of Argonaute2 and Argonaute4 compromised RISC assembly. Simulations predict that internal water molecules are exchangeable with the bulk solvent but always occupy specific positions at the domain interfaces. These results suggest that after guide RNA-driven conformational changes, water-mediated hydrogen-bonding networks tie together the converged domains to complete the functional RISC structure.


Asunto(s)
Proteínas Argonautas/química , Factores Eucarióticos de Iniciación/química , Proteínas de Unión al ARN/química , Complejo Silenciador Inducido por ARN/química , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Estructura Cuaternaria de Proteína , Células Sf9 , Spodoptera
14.
EMBO J ; 38(16): e100727, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31330067

RESUMEN

Translational readthrough generates proteins with extended C-termini, which often possess distinct properties. Here, we have used various reporter assays to demonstrate translational readthrough of AGO1 mRNA. Analysis of ribosome profiling data and mass spectrometry data provided additional evidence for translational readthrough of AGO1. The endogenous readthrough product, Ago1x, could be detected by a specific antibody both in vitro and in vivo. This readthrough process is directed by a cis sequence downstream of the canonical AGO1 stop codon, which is sufficient to drive readthrough even in a heterologous context. This cis sequence has a let-7a miRNA-binding site, and readthrough is promoted by let-7a miRNA. Interestingly, Ago1x can load miRNAs on target mRNAs without causing post-transcriptional gene silencing, due to its inability to interact with GW182. Because of these properties, Ago1x can serve as a competitive inhibitor of miRNA pathway. In support of this, we observed increased global translation in cells overexpressing Ago1x. Overall, our results reveal a negative feedback loop in the miRNA pathway mediated by the translational readthrough product of AGO1.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , MicroARNs/genética , Biosíntesis de Proteínas , Proteínas Argonautas/química , Autoantígenos/metabolismo , Sitios de Unión , Codón de Terminación , Factores Eucarióticos de Iniciación/química , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal
15.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31080011

RESUMEN

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Hepacivirus/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/genética , ARN Viral/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
16.
RNA ; 25(5): 620-629, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770397

RESUMEN

The small interfering RNAs (siRNA) or microRNAs (miRNA) incorporated into the RNA-induced silencing complex with the Argonaute (Ago) protein associates with target mRNAs through base-pairing, which leads to the cleavage or knockdown of the target mRNA. The seed region of the s(m)iRNA is crucial for target recognition. In this work, a molecular dynamic simulation was utilized to study the thermodynamics and kinetic properties of the third seed base binding to the target in the presence of the PIWI/MID domain of Ago. The results showed that in the presence of the PIWI/MID domain, the entropy and enthalpy changes for the association of the seed base with the target were smaller than those in the absence of protein. The binding affinity was increased due to the reduced entropy penalty, which resulted from the preorganization of the seed base into the A-helix form. In the presence of the protein, the association barrier resulting from the unfavorable entropy loss and the dissociation barrier coming from the destruction of hydrogen bonding and base-stacking interactions were lower than those in the absence of the protein. These results indicate that the seed region is crucial for fast recognition and association with the correct target.


Asunto(s)
Proteínas Argonautas/química , Factores Eucarióticos de Iniciación/química , MicroARNs/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , MicroARNs/genética , MicroARNs/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Termodinámica
17.
Proc Natl Acad Sci U S A ; 116(2): 528-533, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584092

RESUMEN

The density-regulated protein (DENR) and the malignant T cell-amplified sequence 1 (MCT-1/MCTS1) oncoprotein support noncanonical translation initiation, promote translation reinitiation on a specific set of mRNAs with short upstream reading frames, and regulate ribosome recycling. DENR and MCT-1 form a heterodimer, which binds to the ribosome. We determined the crystal structure of the heterodimer formed by human MCT-1 and the N-terminal domain of DENR at 2.0-Å resolution. The structure of the heterodimer reveals atomic details of the mechanism of DENR and MCT-1 interaction. Four conserved cysteine residues of DENR (C34, C37, C44, C53) form a classical tetrahedral zinc ion-binding site, which preserves the structure of the DENR's MCT-1-binding interface that is essential for the dimerization. Substitution of all four cysteines by alanine abolished a heterodimer formation. Our findings elucidate further the mechanism of regulation of DENR-MCT-1 activities in unconventional translation initiation, reinitiation, and recycling.


Asunto(s)
Proteínas de Ciclo Celular/química , Factores Eucarióticos de Iniciación/química , Proteínas Oncogénicas/química , Multimerización de Proteína , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Estructura Cuaternaria de Proteína
18.
BMC Struct Biol ; 18(1): 11, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180896

RESUMEN

BACKGROUND: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. RESULTS: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites. CONCLUSIONS: The results described here identify regions in eIF1A and eIF1AD that are likely to play major functional roles and are promising therapeutic targets. Our findings and hypotheses will promote new research and help elucidate the functions of eIF1AD.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Ribosomas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Homología de Secuencia de Aminoácido
19.
Biochemistry ; 57(40): 5910-5920, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30211544

RESUMEN

Eukaryotic translation initiation is a multistep process requiring a number of eukaryotic translation initiation factors (eIFs). Two GTPases play key roles in the process. eIF2 brings the initiator Met-tRNAi to the preinitiation complex (PIC). Upon start codon selection and GTP hydrolysis promoted by the GTPase-activating protein (GAP) eIF5, eIF2-GDP is displaced from Met-tRNAi by eIF5B-GTP and is released in complex with eIF5. eIF5B promotes ribosomal subunit joining, with the help of eIF1A. Upon subunit joining, eIF5B hydrolyzes GTP and is released together with eIF1A. We found that human eIF5 interacts with eIF5B and may help recruit eIF5B to the PIC. An eIF5B-binding motif was identified at the C-terminus of eIF5, similar to that found in eIF1A. Indeed, eIF5 competes with eIF1A for binding and has an ∼100-fold higher affinity for eIF5B. Because eIF5 is the GAP of eIF2, the newly discovered interaction offers a possible mechanism for coordination between the two steps in translation initiation controlled by GTPases: start codon selection and ribosomal subunit joining. Our results indicate that in humans, eIF5B displacing eIF2 from Met-tRNAi upon subunit joining may be coupled to eIF1A displacing eIF5 from eIF5B, allowing the eIF5:eIF2-GDP complex to leave the ribosome.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Proteínas de Neoplasias/química , Proteínas del Tejido Nervioso/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
20.
Nature ; 560(7717): 263-267, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089917

RESUMEN

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Mamíferos , Mitocondrias/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Animales , Codón Iniciador/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/ultraestructura , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , ARN Mitocondrial/química , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/ultraestructura , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...