Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 20(3): 130-137, sept. 2017. ilus
Artículo en Inglés | IBECS | ID: ibc-171331

RESUMEN

Vibrio cholerae is a diverse species that inhabits a wide range of environments from copepods in brackish water to the intestines of humans. In order to remain competitive, V. cholerae uses the versatile type-VI secretion system (T6SS) to secrete anti-prokaryotic and anti-eukaryotic effectors. In addition to competing with other bacterial species, V. cholerae strains also compete with one another. Some strains are able to coexist, and are referred to as belonging to the same compatibility group. Challenged by diverse competitors in various environments, different V. choleare strains secrete different combination of effectors - presumably to best suit their niche. Interestingly, all pandemic V. cholerae strains encode the same three effectors. In addition to the diversity displayed in the encoded effectors, the regulation of V. cholerae also differs between strains. Two main layers of regulation appear to exist. One strategy connects T6SS activity with behavior that is suited to fighting eukaryotic cells, while the other is linked with natural competence - the ability of the bacterium to acquire and incorporate extracellular DNA. This relationship between bacterial killing and natural competence is potentially a source of diversification for V. cholerae as it has been shown to incorporate the DNA of cells recently killed through T6SS activity. It is through this process that we hypothesize the transfer of virulence factors, including T6SS effector modules, to happen. Switching of T6SS effectors has the potential to change the range of competitors V. cholerae can kill and to newly define which strains V. cholerae can co-exist with, two important parameters for survival in diverse environments (AU)


No disponible


Asunto(s)
Humanos , Masculino , Femenino , Vibrio cholerae/genética , Vibrio cholerae/aislamiento & purificación , Eucariontes/aislamiento & purificación , Factores Procarióticos de Iniciación/aislamiento & purificación , Sistemas de Secreción Bacterianos/análisis , Sistemas de Secreción Tipo VI/aislamiento & purificación , Sistemas de Secreción Bacterianos/clasificación
2.
Int. microbiol ; 20(3): 138-148, sept. 2017. ilus
Artículo en Inglés | IBECS | ID: ibc-171332

RESUMEN

Vibrio cholerae is one of the deadliest pathogens in the history of humankind. It is the causative agent of cholera, a disease characterized by a profuse and watery diarrhoea that still today causes 95.000 deaths worldwide every year. V. cholerae is a free living marine organism that interacts with and infects a variety of organisms, from amoeba to humans, including insects and crustaceans. The complexity of the lifestyle and ecology of V. cholerae suggests a high genetic and phenotypic plasticity. In this review, we will focus on two peculiar genomic features that enhance genetic plasticity in this bacterium: the division of its genome in two different chromosomes and the presence of the superintegron, a gene capture device that acts as a large, low-cost memory of adaptive functions, allowing V. cholerae to adapt rapidly (AU)


No disponible


Asunto(s)
Humanos , Masculino , Femenino , Vibrio cholerae/genética , Vibrio cholerae/aislamiento & purificación , Factores Procarióticos de Iniciación/aislamiento & purificación , Cólera/microbiología , Diarrea/microbiología , Cólera/etiología , Diarrea/etiología , Estilo de Vida , Genoma Bacteriano/genética
3.
Nucleic Acids Res ; 42(4): 2505-11, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24271401

RESUMEN

The translation initiation factor aIF2 of the crenarchaeon Sulfolobus solfataricus (Sso) recruits initiator tRNA to the ribosome and stabilizes mRNAs by binding via the γ-subunit to their 5'-triphosphate end. It has been hypothesized that the latter occurs predominantly during unfavorable growth conditions, and that aIF2 or aIF2-γ is released on relief of nutrient stress to enable in particular anew translation of leaderless mRNAs. As leaderless mRNAs are prevalent in Sso and aIF2-γ bound to the 5'-end of a leaderless RNA inhibited ribosome binding in vitro, we aimed at elucidating the mechanism underlying aIF2/aIF2-γ recycling from mRNAs. We have identified a protein termed Trf (translation recovery factor) that co-purified with trimeric aIF2 during outgrowth of cells from prolonged stationary phase. Subsequent in vitro studies revealed that Trf triggers the release of trimeric aIF2 from RNA, and that Trf directly interacts with the aIF2-γ subunit. The importance of Trf is further underscored by an impaired protein synthesis during outgrowth from stationary phase in a Sso trf deletion mutant.


Asunto(s)
Proteínas Arqueales/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factores Procarióticos de Iniciación/metabolismo , ARN Mensajero/metabolismo , Sulfolobus solfataricus/genética , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Mutación , Factores Procarióticos de Iniciación/aislamiento & purificación , Sulfolobus solfataricus/crecimiento & desarrollo , Sulfolobus solfataricus/metabolismo
4.
Biophys Chem ; 100(1-3): 437-52, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12646382

RESUMEN

Heat-shock locus VU (HslVU) is an ATP-dependent proteolytic system and a prokaryotic homolog of the proteasome. It consists of HslV, the protease, and HslU, the ATPase and chaperone. We have cloned, sequenced and expressed both protein components from the hyperthermophile Thermotoga maritima. T. maritima HslU hydrolyzes a variety of nucleotides in a temperature-dependent manner, with the optimum lying between 75 and 80 degrees C. It is also nucleotide-unspecific for activation of HslV against amidolytic and caseinolytic activity. The Escherichia coli and T. maritima HslU proteins mutually stimulate HslV proteins from both sources, suggesting a conserved activation mechanism. The crystal structure of T. maritima HslV was determined and refined to 2.1-A resolution. The structure of the dodecameric enzyme is well conserved compared to those from E. coli and Haemophilus influenzae. A comparison of known HslV structures confirms the presence of a cation-binding site, although its exact role in the proteolytic mechanism of HslV remains unclear. Amongst factors responsible for the thermostability of T. maritima HslV, extensive ionic interactions/salt-bridge networks, which occur specifically in the T. maritima enzyme in comparison to its mesophilic counterparts, seem to play an important role.


Asunto(s)
Bacterias/metabolismo , Cisteína Endopeptidasas/química , Proteínas de Choque Térmico/química , Complejos Multienzimáticos/química , Factores Procarióticos de Iniciación/química , Serina Endopeptidasas/química , Proteasas ATP-Dependientes , Secuencia de Aminoácidos , Bacterias/química , Fenómenos Químicos , Química Física , Clonación Molecular , Simulación por Computador , Cristalografía por Rayos X , Cisteína Endopeptidasas/aislamiento & purificación , Escherichia coli/metabolismo , Proteínas de Choque Térmico/aislamiento & purificación , Hidrólisis , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Complejos Multienzimáticos/aislamiento & purificación , Factores Procarióticos de Iniciación/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/aislamiento & purificación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...