Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33930332

RESUMEN

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Asunto(s)
Antígenos CD/genética , Interacciones Huésped-Patógeno/genética , Factores Reguladores del Interferón/genética , Interferón Tipo I/genética , SARS-CoV-2/genética , Proteínas Virales/genética , Animales , Antígenos CD/química , Antígenos CD/inmunología , Sitios de Unión , Línea Celular Tumoral , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/virología , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica , Aparato de Golgi/genética , Aparato de Golgi/inmunología , Aparato de Golgi/virología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Factores Reguladores del Interferón/clasificación , Factores Reguladores del Interferón/inmunología , Interferón Tipo I/inmunología , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/inmunología , Transducción de Señal , Células Vero , Proteínas Virales/química , Proteínas Virales/inmunología , Internalización del Virus , Liberación del Virus/genética , Liberación del Virus/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
2.
Dev Comp Immunol ; 98: 166-180, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30928323

RESUMEN

Atlantic cod (Gadus morhua) represents a unique immune system among teleost fish, making it a species of interest for immunological studies, and especially for investigating the evolutionary history of immune gene families. The interferon regulatory factor (IRF) gene family encodes transcription factors which function in the interferon pathway, but also in areas including leukocyte differentiation, cell growth, autoimmunity, and development. We previously characterized several IRF family members in Atlantic cod (Irf4a, Irf4b, Irf7, Irf8, and two Irf10 splice variants) at the cDNA and putative amino acid levels, and in the current study we took advantage of the new and improved Atlantic cod genome assembly in combination with rapid amplification of cDNA ends (RACE) to characterize the remaining family members (i.e. Irf3, Irf5, Irf6, Irf9, and two Irf2 splice variants). Real-time quantitative PCR (QPCR) was used to investigate constitutive expression of all IRF transcripts during embryonic development, suggesting several putative maternal transcripts, and potential stage-specific roles. QPCR studies also showed 11 of 13 transcripts were responsive to stimulation with poly(I:C), while 6 of 13 transcripts were responsive to lipopolysaccharide (LPS) in Atlantic cod head kidney macrophages, indicating roles for cod IRF family members in both antiviral and antibacterial responses. This study is the first to investigate expression of the complete IRF family in Atlantic cod, and suggests potential novel roles for several of these transcription factors within immunity as well as in early development of this species.


Asunto(s)
Proteínas de Peces/genética , Gadus morhua/genética , Perfilación de la Expresión Génica/métodos , Factores Reguladores del Interferón/genética , Familia de Multigenes , Empalme Alternativo , Animales , Proteínas de Peces/clasificación , Factores Reguladores del Interferón/clasificación , Larva/genética , Filogenia , Isoformas de Proteínas/genética
3.
Sci Rep ; 5: 16610, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26586289

RESUMEN

During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.


Asunto(s)
Agrobacterium/genética , Proteínas Bacterianas/genética , Proteínas F-Box/genética , Factores Reguladores del Interferón/genética , Plásmidos Inductores de Tumor en Plantas/genética , Proteínas Virales/genética , Agrobacterium/clasificación , Agrobacterium/metabolismo , Secuencia de Aminoácidos , Arginina/análogos & derivados , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas F-Box/metabolismo , Factores Reguladores del Interferón/clasificación , Factores Reguladores del Interferón/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Filogenia , Plásmidos Inductores de Tumor en Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Homología de Secuencia de Aminoácido , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virales/clasificación , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Immunol Lett ; 164(2): 55-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712467

RESUMEN

Interferon regulatory factors (IRFs) are named for their ability to bind to and regulate interferon genes when an organism becomes infected with a virus. Numerous studies have revealed the versatile and critical functions of IRFs. In this study, an IRF gene from Lampetra japonica was identified and analyzed using bioinformatic methods. The L. japonica IRF (Lj-IRF) shares high sequence homology with other vertebrate IRFs but low sequence homology with an ascidian IRF-like protein. We also used recombinant Lj-IRF protein (rLj-IRF) to immunize New Zealand rabbits to prepare specific anti-rLj-IRF polyclonal antibodies. Enzyme-linked immunosorbent assays (ELISAs) and Western blotting assays were performed to detect the valence and specificity of the antibody. FACS analysis revealed that the Lj-IRF protein was expressed in approximately 21.14% of leukocytes and 9.60% of supraneural body cells in L. japonica, with immunofluorescence staining indicating a cytoplasmic location. The immunohistochemistry results demonstrated that IRF is distributed in the epithelial cells of the heart, supraneural body, kidneys and gills but is not detectable in intestinals or oral gland tissues. However, the expression of IRF was upregulated in lamprey intestinal tissues upon stimulation with the rLj-HMGB1 protein. Lj-IRF gene expression levels were higher in the rLj-HMGB1-stimulated group than the control group, and the expression level of Lj-IRF was significantly increased in the intestines as determined by quantitative real-time PCR. These results provide a foundation for studying the origin and evolution of the innate immune system in lampreys.


Asunto(s)
Factores Reguladores del Interferón/genética , Lampreas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biología Computacional , Expresión Génica , Inmunohistoquímica , Factores Reguladores del Interferón/química , Factores Reguladores del Interferón/clasificación , Factores Reguladores del Interferón/metabolismo , Lampreas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Alineación de Secuencia
5.
Mol Biol Evol ; 26(11): 2539-50, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19638535

RESUMEN

This manuscript presents the first extensive phylogenetics analysis of a key family of immune regulators, the interferon regulatory factor (IRF) family. The IRF family encodes transcription factors that play important roles in immune defense, stress responses, reproduction, development, and carcinogenesis. Several times during their evolution, the IRF genes have undergone expansion and diversification. These genes were also completely lost on two separate occasions in large groups of metazoans. The origin of the IRF family coincides with the appearance of multicellularity in animals. IRF genes are present in all principal metazoan groups, including sea sponges, placozoans, comb jellies, cnidarians, and bilaterians. Although the number of IRF family members does not exceed two in sponges and placozoans, this number reached five in cnidarians. At least four additional independent expansions lead up to 11 members in different groups of bilaterians. In contrast, the IRF genes either disappeared or mutated beyond recognition in roundworms and insects, the two groups that include most of the metazoan species. The IRF family separated very early into two branches ultimately leading to vertebrate IRF1 and IRF4 supergroups (SGs). Genes encoding the IRF-SGs are present in all bilaterians and cnidarians. The evolution of vertebrate IRF family members further proceeded with at least two additional steps. First, close to the appearance of the first vertebrate, the IRF family probably expanded to four family members, predecessors of the four vertebrate IRF groups (IRF1, 3, 4, 5 groups). In the second step, 10 vertebrate family members evolved from these four genes, likely as a result of the 2-fold duplication of the entire genome. Interestingly, the IRF family coevolved with the Rel/NF-kappaB family with which it shares some important evolutionary characteristics, including roles in defense responses, metazoan specificity, extensive diversification in vertebrates, and elimination of all family members in nematodes.


Asunto(s)
Evolución Molecular , Factores Reguladores del Interferón/genética , Animales , Duplicación de Gen , Factores Reguladores del Interferón/clasificación , Invertebrados/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA