Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 136(Pt 5): 1544-54, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23599390

RESUMEN

Whole exome sequencing is a powerful tool to detect novel pathogenic mutations in patients with suspected mitochondrial disease. However, the interpretation of novel genetic variants is not always straightforward. Here, we present two siblings with a severe neonatal encephalopathy caused by complex V deficiency. The aim of this study was to uncover the underlying genetic defect using the combination of enzymatic testing and whole exome sequence analysis, and to provide evidence for causality by functional follow-up. Measurement of the oxygen consumption rate and enzyme analysis in fibroblasts were performed. Immunoblotting techniques were applied to study complex V assembly. The coding regions of the genome were analysed. Three-dimensional modelling was applied. Exome sequencing of the two siblings with complex V deficiency revealed a heterozygous mutation in the ATP5A1 gene, coding for complex V subunit α. The father carried the variant heterozygously. At the messenger RNA level, only the mutated allele was expressed in the patients, whereas the father expressed both the wild-type and the mutant allele. Gene expression data indicate that the maternal allele is not expressed, which is supported by the observation that the ATP5A1 expression levels in the patients and their mother are reduced to ∼50%. Complementation with wild-type ATP5A1 restored complex V in the patient fibroblasts, confirming pathogenicity of the defect. At the protein level, the mutation results in a disturbed interaction of the α-subunit with the ß-subunit of complex V, which interferes with the stability of the complex. This study demonstrates the important value of functional studies in the diagnostic work-up of mitochondrial patients, in order to guide genetic variant prioritization, and to validate gene defects.


Asunto(s)
Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Células Cultivadas , Humanos , Recién Nacido , Encefalomiopatías Mitocondriales/mortalidad , ATPasas de Translocación de Protón Mitocondriales/química , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Estructura Secundaria de Proteína
2.
J Bioenerg Biomembr ; 41(2): 137-43, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19377834

RESUMEN

Since the early studies on the resolution and reconstitution of the oxidative phosphorylation system from animal mitochondria, coupling factor B was recognized as an essential component of the machinery responsible for energy-driven ATP synthesis. At the phenomenological level, factor B was agreed to lie at the interface of energy transfer between the respiratory chain and the ATP synthase complex. However, biochemical characterization of the factor B polypeptide has proved difficult. It was not until 1990 that the N-terminal amino acid sequence of bovine mitochondrial factor B was reported, which followed, a decade later, by the report describing the amino acid sequence of full-length human factor B and its functional characterization. The present review summarizes the recent advances in structure-functional studies of factor B, including its recently determined crystal structure at 0.96 A resolution. Ectopic expression of human factor B in cultured animal cells has unexpectedly revealed its role in shaping mitochondrial morphology. The supramolecular assembly of ATP synthase as dimer ribbons at highly curved apices of the mitochondrial cristae was recently suggested to optimize ATP synthesis under proton-limited conditions. We propose that the binding of the ATP synthase dimers with factor B tetramers could be a means to enhance the efficiency of the terminal step of oxidative phosphorylation in animal mitochondria.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/biosíntesis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Fosforilación Oxidativa , Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Animales , Bovinos , Línea Celular , Transporte de Electrón/fisiología , Humanos , Mitocondrias/química , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Estructura Cuaternaria de Proteína/fisiología , Estructura Terciaria de Proteína , Relación Estructura-Actividad
3.
Proc Natl Acad Sci U S A ; 105(36): 13379-84, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18768789

RESUMEN

Coupling factor B (FB) is a mitochondrial inner membrane polypeptide that facilitates the energy-driven catalysis of ATP synthesis in animal mitochondria by blocking a proton leak across the membrane. Here, we report the crystal structure of the bovine mitochondrial FB mutant with Gly-3-Glu substitution determined at a resolution of 0.96 A and that of the WT polypeptide at a resolution of 2.9 A. The structure reveals an oblong, oval-shaped molecule with a unique globular N-terminal domain that is proposed to be the membrane anchor domain and the capping region to the C-terminal leucine-rich repeats domain. A short N-terminal alpha-helix, which extends away from the molecule's body, is suggestive of functioning as an anchor for FB to the matrix side of the mitochondrial inner membrane. Identification of a bound Mg(2+) ion reveals that FB is a metalloprotein. We also report the cocrystal structures of FB bound with phenylarsine oxide and Cd(2+), two known inhibitors of the FB coupling activity.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Animales , Sitios de Unión , Cadmio/química , Cadmio/metabolismo , Bovinos , Cristalografía por Rayos X , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Mutación/genética , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
4.
Arch Biochem Biophys ; 473(1): 76-87, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18319055

RESUMEN

Treatment of the recombinant bovine factor B with trypsin yielded a fragment (amino acid residues 62-175) devoid of coupling activity. Removal of the N-terminal Trp2-Gly3-Trp4 peptide resulted in a significant loss of coupling activity in the FB(DeltaW)(2)(-W)(4) deletion mutant. Sucrose density gradient centrifugation demonstrated co-sedimentation of recombinant factor B with the ADP/ATP carrier, which is present in preparations of H(+)-translocating F(0)F(1)-ATPase, but not in preparations of complex V. The N-terminally truncated factor B mutant FB(DeltaW)(2)(-W)(4) did not co-sediment with the ADP/ATP carrier. Recombinant factor B co-sedimented with partially purified membrane sector F(0), extracted from F(1)-stripped bovine submitochondrial particles with n-dodecyl-beta-d-maltoside. Factor B inhibited the passive proton conductance catalyzed by F(0) reconstituted into asolectin liposomes. A factor B mutant, bearing a photoreactive unnatural amino acid pbenzoyl-l-phenylalanine (pBpa) substituted for Trp2, cross-linked with F(0) subunits e and g as well as the ADP/ATP carrier. These results suggest that the N-terminal domain and, in particular, the proximal N-terminal amino acids are important for the coupling activity and protein-protein interactions of bovine factor B.


Asunto(s)
Mitocondrias Cardíacas/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/fisiología , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Factores de Acoplamiento de la Fosforilación Oxidativa/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Secuencia de Aminoácidos/genética , Animales , Bovinos , Reactivos de Enlaces Cruzados/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad , Partículas Submitocóndricas/enzimología , Partículas Submitocóndricas/metabolismo
5.
Arch Biochem Biophys ; 292(1): 87-94, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1530778

RESUMEN

Escherichia coli strain KF148(SD-) defective in translation of the uncC gene for the epsilon subunit of H(+)-ATPase could not support growth by oxidative phosphorylation due to lack of F1 binding to Fo (M. Kuki, T. Noumi, M. Maeda, A. Amemura, and M. Futai, 1988, J. Biol. Chem. 263, 17, 437-17, 442). Mutant uncC genes for epsilon subunits lacking different lengths from the amino terminus were constructed and introduced into strain KF148(SD-). F1 with an epsilon subunit lacking the 15 amino-terminal residues could bind to F0 in a functionally competent manner, indicating that these amino acid residues are not absolutely necessary for formation of a functional enzyme. However, mutant F1 in which the epsilon subunit lacked 16 amino-terminal residues showed defective coupling between ATP hydrolysis (synthesis) and H(+)-translocation, although the mutant F1 showed partial binding to Fo. These findings suggest that the epsilon subunit is essential for binding of F1 to F0 and for normal H(+)-translocation. Previously, Kuki et al. (cited above) reported that 60 residues were not necessary for a functional enzyme. However, the mutant with an epsilon subunit lacking 15 residues from the amino terminus and 4 residues from the carboxyl terminus was defective in oxidative phosphorylation, suggesting that both terminal regions affect the conformation of the region essential for a functional enzyme.


Asunto(s)
Escherichia coli/enzimología , ATPasas de Translocación de Protón/química , Secuencia de Aminoácidos , Secuencia de Bases , Membrana Celular/química , Membrana Celular/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Genes Sintéticos , Hidrólisis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Plásmidos , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/fisiología , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA