Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(2): 776-790, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33337488

RESUMEN

Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαß heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.


Asunto(s)
Proteínas Bacterianas/fisiología , Dickeya/patogenicidad , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/fisiología , Proteínas Bacterianas/genética , Sitios de Unión , Celulasa/biosíntesis , Celulasa/genética , Cichorium intybus/microbiología , ADN Bacteriano/metabolismo , ADN Superhelicoidal/metabolismo , Dickeya/genética , Dickeya/fisiología , Dimerización , Estudios de Asociación Genética , Factores de Integración del Huésped/química , Factores de Integración del Huésped/genética , Movimiento (Física) , Péptido Hidrolasas/biosíntesis , Péptido Hidrolasas/genética , Plásmidos , Poligalacturonasa/biosíntesis , Poligalacturonasa/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Sideróforos/biosíntesis , Sideróforos/genética , Transcripción Genética/genética , Transcriptoma , Virulencia/genética
2.
Nucleic Acids Res ; 48(9): 5006-5015, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32255177

RESUMEN

The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.


Asunto(s)
Adenosina Trifosfato/metabolismo , Genoma Viral , Ensamble de Virus , Nucleótidos de Adenina/metabolismo , Bacteriófago lambda/enzimología , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Cápside/metabolismo , ADN Viral/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/fisiología , Factores de Integración del Huésped/fisiología
3.
J Biomed Sci ; 26(1): 47, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31215493

RESUMEN

Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.


Asunto(s)
Infecciones por Enterovirus/virología , Enterovirus/fisiología , Factores de Integración del Huésped/fisiología , Vacunas Virales/análisis , Virión/fisiología , Humanos
4.
Biochemistry ; 53(48): 7459-70, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25335823

RESUMEN

Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the protein can bind in a sequence-independent manner that weakly bends and wraps the duplex to promote nucleoid formation. IHF is also required for the development of several viruses, including bacteriophage lambda, where it promotes site-specific assembly of a genome packaging motor required for lytic development. Multiple IHF consensus sequences have been identified within the packaging initiation site (cos), and we here interrogate IHF-cos binding interactions using complementary electrophoretic mobility shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex. In contrast, IHF binds weakly but with positive cooperativity to nonspecific DNA to afford an ensemble of complexes with increasing masses and levels of condensation. Global analysis of the EMS and AUC data provides constrained thermodynamic binding constants and nearest neighbor cooperativity factors for binding of IHF to I1 and to nonspecific DNA substrates. At elevated IHF concentrations, the nucleoprotein complexes undergo a transition from a condensed to an extended rodlike conformation; specific binding of IHF to I1 imparts a significant energy barrier to the transition. The results provide insight into how IHF can assemble specific regulatory complexes in the background of extensive nonspecific DNA condensation.


Asunto(s)
Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Empaquetamiento del ADN/fisiología , Factores de Integración del Huésped/fisiología , Ensamble de Virus/fisiología , ADN Viral/química , ADN Viral/fisiología , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genoma Viral , Factores de Integración del Huésped/química , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleoproteínas/química , Nucleoproteínas/fisiología , Conformación Proteica , Termodinámica
5.
Nucleic Acids Res ; 40(8): 3524-37, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22180530

RESUMEN

IHF and HU are two heterodimeric nucleoid-associated proteins (NAP) that belong to the same protein family but interact differently with the DNA. IHF is a sequence-specific DNA-binding protein that bends the DNA by over 160°. HU is the most conserved NAP, which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. Despite their importance, the in vivo interactions of the two proteins to the DNA remain to be described at a high resolution and on a genome-wide scale. Further, the effects of these proteins on gene expression on a global scale remain contentious. Finally, the contrast between the functions of the homo- and heterodimeric forms of proteins deserves the attention of further study. Here we present a genome-scale study of HU- and IHF binding to the Escherichia coli K12 chromosome using ChIP-seq. We also perform microarray analysis of gene expression in single- and double-deletion mutants of each protein to identify their regulons. The sequence-specific binding profile of IHF encompasses ∼30% of all operons, though the expression of <10% of these is affected by its deletion suggesting combinatorial control or a molecular backup. The binding profile for HU is reflective of relatively non-specific binding to the chromosome, however, with a preference for A/T-rich DNA. The HU regulon comprises highly conserved genes including those that are essential and possibly supercoiling sensitive. Finally, by performing ChIP-seq experiments, where possible, of each subunit of IHF and HU in the absence of the other subunit, we define genome-wide maps of DNA binding of the proteins in their hetero- and homodimeric forms.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/metabolismo , Factores de Transcripción/metabolismo , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Eliminación de Gen , Genoma Bacteriano , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/fisiología , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
6.
Antonie Van Leeuwenhoek ; 101(3): 479-92, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038127

RESUMEN

Bacterial integration host factors (IHFs) play important roles in site-specific recombination, DNA replication, transcription, genome organization and bacterial pathogenesis. In Streptomyces coelicolor, there are three putative IHFs: SCO1480, SCO2950 and SCO5556. SCO1480 or Streptomyces IHF (sIHF) was previously identified as a transcription factor that binds to the promoter region of redD, the pathway-specific regulatory gene for the undecylprodigiosin biosynthetic gene cluster. Here we show that production of the pigmented antibiotics actinorhodin and undecylprodigiosin is strongly enhanced in sihf null mutants, while sporulation was strongly inhibited, with an on average 25% increase in spore size. Furthermore, the sihf mutant spores showed strongly reduced viability, with high sensitivity to heat and live/dead staining revealing a high proportion of empty spores, while enhanced expression of sIHF increased viability. This suggests a major role for sIHF in controlling viability, perhaps via the control of DNA replication and/or segregation. Proteomic analysis of the sihf null mutant identified several differentially expressed transcriptional regulators, indicating that sIHF may have an extensive response regulon. These data surprisingly reveal that a basic architectural element conserved in many actinobacteria such as mycobacteria, corynebacteria, streptomycetes and rhodococci may act as a global regulator of secondary metabolism and cell development.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/fisiología , Streptomyces coelicolor/metabolismo , Antraquinonas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Electroforesis en Gel Bidimensional , Escherichia coli , Eliminación de Gen , Genes Bacterianos , Calor , Factores de Integración del Huésped/genética , Microscopía Electrónica , Microscopía Fluorescente , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Prodigiosina/metabolismo , Proteómica , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Esporas Bacterianas/fisiología , Esporas Bacterianas/ultraestructura , Coloración y Etiquetado , Streptomyces coelicolor/genética , Streptomyces coelicolor/fisiología
7.
Nat Rev Microbiol ; 10(2): 137-49, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22183253

RESUMEN

Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.


Asunto(s)
Virus ARN/fisiología , ARN Viral/metabolismo , Replicación Viral/fisiología , Coronavirus/fisiología , Flavivirus/fisiología , Humanos , Factores de Integración del Huésped/fisiología , Chaperonas Moleculares/fisiología , Poliomielitis/virología , Poliovirus/fisiología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/virología , Saccharomyces cerevisiae/virología
8.
PLoS One ; 5(6): e11025, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20552012

RESUMEN

Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of approximately 21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.


Asunto(s)
Citosol/microbiología , Francisella tularensis/crecimiento & desarrollo , Factores de Integración del Huésped/fisiología , Fagosomas/microbiología , Animales , Línea Celular , Drosophila melanogaster/fisiología , Francisella tularensis/genética , Humanos , Antígenos de Histocompatibilidad Menor , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Interferencia de ARN , Tioléster Hidrolasas/fisiología , Ubiquitina Tiolesterasa
9.
Biochemistry ; 48(4): 667-75, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19132923

RESUMEN

Integration host factor (IHF), a nucleoid-associated protein in bacterial cells, is implicated in a number of chromosomal functions including DNA compaction. IHF binds to all duplex DNA with micromolar affinity and at sequence-specific sites with much higher affinity. IHF is known to induce sharp bends in the helical axis of DNA in both modes of binding, but the role of IHF in controlling DNA condensation within bacterial cells has remained undetermined. Here we demonstrate that IHF influences the morphology of DNA condensed by polyamines in vitro. In the absence of IHF, spermidine and spermine condense DNA primarily into toroidal structures, whereas in the presence of IHF, polyamines condense DNA primarily into rodlike structures. Computer simulations of DNA condensation in the absence and presence of IHF binding lend support to our model in which DNA bending proteins, such as IHF and HU, promote the condensation of DNA into rodlike structures by providing the free energy necessary to bend DNA at the ends of linear bundles of condensed DNA. We propose that a common function of IHF and HU in bacterial cells is to facilitate DNA organization in the nucleoid by the introduction of sharp bends in chromosomal DNA.


Asunto(s)
Proteínas Bacterianas/fisiología , Cromatina/química , ADN Bacteriano/química , Factores de Integración del Huésped/fisiología , Poliaminas/química , Cromatina/genética , Cromatina/metabolismo , ADN Bacteriano/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Histonas/química , Histonas/fisiología , Factores de Integración del Huésped/química
10.
Nucleic Acids Res ; 35(12): 3988-4000, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17553830

RESUMEN

The intrinsic stiffness of DNA limits its ability to be bent and twisted over short lengths, but such deformations are required for gene regulation. One classic paradigm is DNA looping in the regulation of the Escherichia coli lac operon. Lac repressor protein binds simultaneously to two operator sequences flanking the lac promoter. Analysis of the length dependence of looping-dependent repression of the lac operon provides insight into DNA deformation energetics within cells. The apparent flexibility of DNA is greater in vivo than in vitro, possibly because of host proteins that bind DNA and induce sites of flexure. Here we test DNA looping in bacterial strains lacking the nucleoid proteins HU, IHF or H-NS. We confirm that deletion of HU inhibits looping and that quantitative modeling suggests residual looping in the induced operon. Deletion of IHF has little effect. Remarkably, DNA looping is strongly enhanced in the absence of H-NS, and an explanatory model is proposed. Chloroquine titration, psoralen crosslinking and supercoiling-sensitive reporter assays show that the effects of nucleoid proteins on looping are not correlated with their effects on either total or unrestrained supercoiling. These results suggest that host nucleoid proteins can directly facilitate or inhibit DNA looping in bacteria.


Asunto(s)
ADN Bacteriano/química , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/genética , Operón Lac , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ADN Superhelicoidal/química , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/fisiología , Modelos Genéticos , Conformación de Ácido Nucleico
11.
Virology ; 365(1): 101-12, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17467023

RESUMEN

Closing the Sendai virus C protein open reading frames (rSeV-DeltaC virus) results in the production of virus particles with highly reduced infectivity. Besides, the Sendai virus C proteins interact with Alix/AIP1 and Alix suppression negatively affects Sendai virus like particle (VLP) budding. Similarly, the Sendai virus M protein has been shown to interact with Alix. On this basis, it has been suggested that Sendai virus budding involves recruitment of the multivesicular body formation machinery. We follow, here, the production of SeV particles upon regular virus infection. We find that neither Alix suppression nor dominant negative-VPS4A expression, applied separately or in combination, affects physical or infectious virion production. This contrasts with the observed decrease of SV5 virion production upon dominant negative-VPS4A expression. Finally, we show that suppression of more than 70% of a GFP/C protein in the background of a rSeV-DeltaC virus infection has no effect either on SeV particle production or on virus particle infectivity. Our results contrast with what has been published before. Possible explanations for this discrepancy are discussed.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Infecciones por Respirovirus/fisiopatología , Virus Sendai/fisiología , Proteínas de Transporte Vesicular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Células HeLa , Humanos , Factores de Integración del Huésped/fisiología , Sistemas de Lectura Abierta , Virus Sendai/genética , ATPasas de Translocación de Protón Vacuolares , Virión/fisiología
12.
J Bacteriol ; 189(8): 3036-43, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17293415

RESUMEN

Maintaining appropriate levels of the global regulator FNR is critical to its function as an O(2) sensor. In this study, we examined the mechanisms that control transcription of fnr to increase our understanding of how FNR protein levels are regulated. Under anaerobic conditions, one mechanism that controls fnr expression is negative autoregulation by the active [4Fe-4S] form of FNR. Through DNase I footprinting and in vitro transcription experiments, we observed that direct binding of [4Fe-4S]-FNR to the predicted downstream FNR binding site is sufficient for repression of the fnr promoter in vitro. In addition, the downstream FNR binding site was required for repression of transcription from fnr'-lacZ fusions in vivo. No repression of fnr was observed in vivo or in vitro with the apoprotein form of FNR, indicating that repression requires the dimeric, Fe-S cluster-containing protein. Furthermore, our in vitro and in vivo data suggest that [4Fe-4S]-FNR does not bind to the predicted upstream FNR binding site within the fnr promoter. Rather, we provide evidence that integration host factor binds to this upstream region and increases in vivo expression of Pfnr under both aerobic and anaerobic conditions.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/fisiología , Proteínas Hierro-Azufre/genética , Factores de Transcripción/genética , Aerobiosis , Anaerobiosis , Secuencia de Bases , Sitios de Unión/genética , Dimerización , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Oxígeno/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 103(49): 18510-4, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17116862

RESUMEN

Integration host factor (IHF) is a prokaryotic protein required for the integration of lambda phage DNA into its host genome. An x-ray crystal structure of the complex shows that IHF binds to the minor groove of DNA and bends the double helix by 160 degrees [Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Cell 87:1295-1306]. We sought to dissect the complex formation process into its component binding and bending reaction steps, using stopped-flow fluorimetry to observe changes in resonance energy transfer between DNA-bound dyes, which in turn reflect distance changes upon bending. Different DNA substrates that are likely to increase or decrease the DNA bending rate were studied, including one with a nick in a critical kink position, and a substrate with longer DNA ends to increase hydrodynamic friction during bending. Kinetic experiments were carried out under pseudofirst-order conditions, in which the protein concentration is in substantial excess over DNA. At lower concentrations, the reaction rate rises linearly with protein concentration, implying rate limitation by the bimolecular reaction step. At high concentrations the rate reaches a plateau value, which strongly depends on temperature and the nature of the DNA substrate. We ascribe this reaction limit to the DNA bending rate and propose that complex formation is sequential at high concentration: IHF binds rapidly to DNA, followed by slower DNA bending. Our observations on the bending step kinetics are in agreement with results using the temperature-jump kinetic method.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/fisiología , Factores de Integración del Huésped/fisiología , Ácidos Nucleicos Heterodúplex/metabolismo , Sitios de Unión/genética , ADN Bacteriano/síntesis química , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/metabolismo , Ácidos Nucleicos Heterodúplex/síntesis química , Unión Proteica/genética , Temperatura
14.
J Biol Chem ; 281(51): 39236-48, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17035240

RESUMEN

Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.


Asunto(s)
ADN/química , Escherichia coli/metabolismo , Factores de Integración del Huésped/fisiología , Secuencias de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN Superhelicoidal/química , Histonas/química , Factores de Integración del Huésped/metabolismo , Modelos Moleculares , Modelos Estadísticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Análisis de Regresión , Termodinámica
15.
FEMS Microbiol Lett ; 261(1): 109-17, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16842367

RESUMEN

CsgD is a master regulator of multicellular behaviour in Salmonella enterica serovar Typhimurium. Expression of CsgD is highly regulated on the transcriptional level. A nucleo-protein complex had been defined where the global regulators OmpR and integration host factor (IHF) bind up- and downstream of the csgD core promoter. In this study, the nucleo-protein complex of PcsgD was extended through characterization of additional OmpR and IHF binding sites that influence the transcriptional activity of the csgD promoter. Furthermore, the role of the 174 bp long 5'-untranslated region on transcriptional activity was defined.


Asunto(s)
Regiones no Traducidas 5'/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/fisiología , Regiones Promotoras Genéticas , Salmonella typhimurium/genética , Transactivadores/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Secuencia de Bases , Sitios de Unión , Huella de ADN , ADN Intergénico/metabolismo , Factores de Integración del Huésped/química , Factores de Integración del Huésped/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Salmonella typhimurium/metabolismo , Eliminación de Secuencia , Transactivadores/metabolismo
16.
Mol Microbiol ; 59(6): 1831-47, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16553887

RESUMEN

The integration host factor (IHF) is a DNA-binding and -bending protein with roles in local DNA structural organization and transcriptional regulation in Gram-negative bacteria. This heterodimeric protein is composed of the two highly homologous subunits IHFalpha and IHFbeta. DNA microarray analysis was used to define the regulon of genes subject to IHF control in Salmonella enterica serovar Typhimurium (S. Typhimurium). The transcription profile of the wild type was compared with those of mutants deficient in IHFalpha, IHFbeta, or both IHFalpha and IHFbeta. Our data reveal a new connection between IHF and the expression of genes required by the bacterium to undergo the physiological changes associated with the transition from exponential growth to stationary phase. When a mutant lacking IHF entered stationary phase, it displayed downregulated expression of classic stationary-phase genes in the absence of any concomitant change in expression of the RpoS sigma factor. Purified IHF was found to bind to the regulatory regions of stationary-phase genes indicating an auxiliary and direct role for IHF in RpoS-dependent gene activation. Loss of IHF also had a profound influence on expression of the major virulence genes and epithelial cell invasion, indicating a role in co-ordinating regulation of the pathogenic traits with adaptation to stationary phase. Although the three mutants showed considerable overlaps in the genes affected by the ihf lesions, the observed patterns were not identical, showing that S. Typhimurium has not one but three overlapping IHF regulons.


Asunto(s)
Quimiotaxis/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Factores de Integración del Huésped/fisiología , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Expresión Génica , Factores de Integración del Huésped/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Salmonella typhimurium/genética , Factor sigma/metabolismo , Activación Transcripcional , Virulencia/genética
17.
J Bacteriol ; 187(2): 458-72, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15629917

RESUMEN

The PerC protein of enteropathogenic Escherichia coli (EPEC), encoded by the pEAF plasmid, is an activator of the locus of enterocyte effacement (LEE) pathogenicity island via the LEE1 promoter. It has been assumed that the related LEE-containing pathogen enterohemorrhagic E. coli (EHEC) lacks PerC-dependent activation due to utilization of an alternative LEE1 promoter and lack of a perC gene. However, we show here that EPEC PerC can activate both the EPEC and EHEC LEE1 promoters and that the major transcriptional start site is similarly located in both organisms. Moreover, a PerC-like protein family identified from EHEC genome analyses, PerC1 (also termed PchABC), can also activate both promoters in a manner similar to that of EPEC PerC. The perC1 genes are carried by lambdoid prophages, which exist in multiple copies in different EHEC strains, and have a variable flanking region which may affect their expression. Although individual perC1 copies appear to be poorly expressed, the total perC1 expression level from a strain encoding multiple copies approaches that of perC in EPEC and may therefore contribute significantly to LEE1 activation. Alignment of the protein sequences of these PerC homologues allows core regions of the PerC protein to be identified, and we show by site-directed mutagenesis that these core regions are important for function. However, purified PerC protein shows no in vitro binding affinity for the LEE1 promoter, suggesting that other core E. coli proteins may be involved in its mechanism of activation. Our data indicate that the nucleoid-associated protein IHF is one such protein.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Región de Flanqueo 5' , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/fisiología , Dosificación de Gen , Genes Bacterianos , Genes Virales , Islas Genómicas/genética , Islas Genómicas/fisiología , Factores de Integración del Huésped/fisiología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Plásmidos , Regiones Promotoras Genéticas , Profagos/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética
18.
J Bacteriol ; 187(3): 949-60, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659673

RESUMEN

In the Caulobacter crescentus predivisional cell, class III and IV flagellar genes, encoding the extracytoplasmic components of the flagellum, are transcribed in the nascent swarmer compartment. This asymmetric expression pattern is attributable to the compartmentalized activity of the sigma54-dependent transcriptional activator FlbD. Additionally, these temporally transcribed flagellar promoters possess a consensus sequence for the DNA-binding protein integration host factor (IHF), located between the upstream FlbD binding site and the promoter sequences. Here, we deleted the C. crescentus gene encoding the beta-subunit of the IHF, ihfB (himD), and examined the effect on flagellar gene expression. The DeltaihfB strain exhibited a mild defect in cell morphology and impaired motility. Using flagellar promoter reporter fusions, we observed that expression levels of a subset of class III flagellar promoters were decreased by the loss of IHF. However, one of these promoters, fliK-lacZ, exhibited a wild-type cell cycle-regulated pattern of expression in the absence of IHF. Thus, IHF is required for maximal transcription of several late flagellar genes. The DeltaihfB strain was found to express significantly reduced amounts of the class IV flagellin, FljL, as a consequence of reduced transcriptional activity. Our results indicate that the motility defect exhibited by the DeltaihfB strain is most likely attributable to its failure to accumulate the class IV-encoded 27-kDa flagellin subunit, FljL.


Asunto(s)
Caulobacter crescentus/genética , Flagelos/genética , Regulación Bacteriana de la Expresión Génica/genética , Factores de Integración del Huésped/fisiología , Activación Transcripcional/genética , Proteínas Bacterianas/genética , Caulobacter crescentus/citología , Caulobacter crescentus/crecimiento & desarrollo , Ciclo Celular , Eliminación de Gen , Genes Reporteros , Factores de Integración del Huésped/genética , Plásmidos , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética
19.
J Bacteriol ; 186(14): 4596-604, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15231792

RESUMEN

Denitrification and arginine fermentation are central metabolic processes performed by the opportunistic pathogen Pseudomonas aeruginosa during biofilm formation and infection of lungs of patients with cystic fibrosis. Genome-wide searches for additional components of the anaerobic metabolism identified potential genes for pyruvate-metabolizing NADH-dependent lactate dehydrogenase (ldhA), phosphotransacetylase (pta), and acetate kinase (ackA). While pyruvate fermentation alone does not sustain significant anaerobic growth of P. aeruginosa, it provides the bacterium with the metabolic capacity for long-term survival of up to 18 days. Detected conversion of pyruvate to lactate and acetate is dependent on the presence of intact ldhA and ackA-pta loci, respectively. DNA microarray studies in combination with reporter gene fusion analysis and enzyme activity measurements demonstrated the anr- and ihfA-dependent anaerobic induction of the ackA-pta promoter. Potential Anr and integration host factor binding sites were localized. Pyruvate-dependent anaerobic long-term survival was found to be significantly reduced in anr and ihfA mutants. No obvious ldhA regulation by oxygen tension was observed. Pyruvate fermentation is pH dependent. Nitrate respiration abolished pyruvate fermentation, while arginine fermentation occurs independently of pyruvate utilization.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Ácido Pirúvico/metabolismo , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Acetatos/metabolismo , Anaerobiosis , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Fermentación , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Reporteros , Concentración de Iones de Hidrógeno , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/fisiología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Mutación , Nitratos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfato Acetiltransferasa/genética , Fosfato Acetiltransferasa/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/crecimiento & desarrollo , Transactivadores/genética , Transactivadores/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
20.
Mol Microbiol ; 52(4): 1055-67, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15130124

RESUMEN

Nucleoid proteins are small, abundant, DNA-binding proteins that profoundly affect the local and global structure of the chromosome, and play a major role in gene regulation. Although several of these proteins have been shown to enhance assembly of transpososomes before initiating transposition, no systematic survey has been carried out examining the in vivo role(s) of these proteins in transposition. We have examined the requirement of the six most abundant nucleoid proteins in transposition for three different transposons, IS903, Tn10 and Tn552. Most notably, H-NS was required for efficient transposition of all three elements in a papillation assay, suggesting a general role for H-NS in bacterial transposition. Further studies indicated that H-NS was exerting its effect on target capture. Targeting preferences for IS903 into the Escherichia coli chromosome were dramatically altered in the absence of H-NS. In addition, the alterations observed in the IS903 target profile emphasized the important role that H-NS plays in chromosome organization. A defect in target capture was also inferred for Tn10, as an excised transposon fragment, a precursor to target capture, accumulated in in vivo induction assays. Furthermore, a transposase mutant that is known to increase target DNA bending and to relax target specificity eliminated this block to target capture. Together, these results imply a role for H-NS in target capture, either by providing regions of DNA more accessible to transposition or by stabilizing transpososome binding to captured targets immediately before strand transfer.


Asunto(s)
Proteínas Bacterianas/fisiología , Elementos Transponibles de ADN , Proteínas de Unión al ADN/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Bacterianas/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/fisiología , Eliminación de Gen , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Mutación , Conformación de Ácido Nucleico , Recombinación Genética , Transposasas/genética , Transposasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...