Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
1.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133135

RESUMEN

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.


Asunto(s)
Diferenciación Celular , Endodermo , Factor de Transcripción GATA6 , Corazón , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Endodermo/metabolismo , Endodermo/embriología , Endodermo/citología , Diferenciación Celular/genética , Corazón/embriología , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Factores de Transcripción GATA
2.
Genes (Basel) ; 15(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062694

RESUMEN

The GATA transcription factors play crucial roles in plant growth, development, and responses to environmental stress. Despite extensive studies of GATA genes in many plants, their specific functions and mechanisms in orchids remain unexplored. In our study, a total of 149 GATA genes were identified in the genomes of seven sequenced orchid species (20 PeqGATAs, 23 CgGATAs, 24 CeGATAs, 23 DcaGATAs, 20 DchGATAs, 27 DnoGATAs, and 12 GelGATAs), classified into four subfamilies. Subfamily I typically contains genes with two exons, while subfamily II contains genes with two or three exons. Most members of subfamilies III and IV have seven or eight exons, with longer introns compared to subfamilies I and II. In total, 24 pairs (CgGATAs-DchGATAs), 27 pairs (DchGATAs-DnoGATAs), and 14 pairs (DnoGATAs-GelGATAs) of collinear relationships were identified. Cis-acting elements in GATA promoters were mainly enriched in abscisic acid (ABA) response elements and methyl jasmonate (MeJA) elements. Expression patterns and RT-qPCR analysis revealed that GATAs are involved in the regulation of floral development in orchids. Furthermore, under high-temperature treatment, GL17420 showed an initial increase followed by a decrease, GL18180 and GL17341 exhibited a downregulation followed by upregulation and then a decrease, while GL30286 and GL20810 displayed an initial increase followed by slight inhibition and then another increase, indicating diverse regulatory mechanisms of different GATA genes under heat stress. This study explores the function of GATA genes in orchids, providing a theoretical basis and potential genetic resources for orchid breeding and stress resistance improvement.


Asunto(s)
Factores de Transcripción GATA , Regulación de la Expresión Génica de las Plantas , Orchidaceae , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/crecimiento & desarrollo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Proteínas de Plantas/genética , Familia de Multigenes , Genoma de Planta , Regiones Promotoras Genéticas , Filogenia , Estrés Fisiológico/genética
3.
World J Microbiol Biotechnol ; 40(8): 236, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850454

RESUMEN

Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.


Asunto(s)
Alternaria , Proteínas Fúngicas , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica , Lactonas , Micotoxinas , Nitrógeno , Alternaria/genética , Alternaria/metabolismo , Alternaria/crecimiento & desarrollo , Micotoxinas/metabolismo , Micotoxinas/biosíntesis , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Nitrógeno/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lactonas/metabolismo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética
4.
Exp Hematol ; 137: 104252, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876253

RESUMEN

Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.


Asunto(s)
Eritropoyesis , Humanos , Eritropoyesis/genética , Animales , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/genética , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica , Hemo/metabolismo , Hemo/biosíntesis , Diferenciación Celular
6.
mBio ; 15(7): e0013324, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38814088

RESUMEN

Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.


Asunto(s)
Botrytis , Ácido Cítrico , Proteínas Fúngicas , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica , Homeostasis , Oxidación-Reducción , Botrytis/genética , Botrytis/patogenicidad , Botrytis/metabolismo , Virulencia , Ácido Cítrico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Enfermedades de las Plantas/microbiología , Eliminación de Gen , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Perfilación de la Expresión Génica
7.
Mol Microbiol ; 122(1): 29-49, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38778742

RESUMEN

Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica , Hemo/metabolismo , Hemoproteínas/metabolismo , Hemoproteínas/genética , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Óxido Nítrico/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
8.
Int J Biol Macromol ; 268(Pt 1): 131820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670184

RESUMEN

In this study, an NSDD gene, which encoded a GATA-type transcription factor involved in the regulation and biosynthesis of melanin, pullulan, and polymalate (PMA) in Aureobasidium melanogenum, was characterized. After the NSDD gene was completely removed, melanin production by the Δnsd mutants was enhanced, while pullulan and polymalate production was significantly reduced. Transcription levels of the genes involved in melanin biosynthesis were up-regulated while expression levels of the genes responsible for pullulan and PMA biosynthesis were down-regulated in the Δnsdd mutants. In contrast, the complementation of the NSDD gene in the Δnsdd mutants made the overexpressing mutants restore melanin production and transcription levels of the genes responsible for melanin biosynthesis. Inversely, the complementation strains, compared to the wild type strains, showed enhanced pullulan and PMA yields. These results demonstrated that the NsdD was not only a negative regulator for melanin biosynthesis, but also a key positive regulator for pullulan and PMA biosynthesis in A. melanogenum. It was proposed how the same transcriptional factor could play a negative role in melanin biosynthesis and a positive role in pullulan and PMA biosynthesis. This study provided novel insights into the regulatory mechanisms of multiple A. melanogenum metabolites and the possibility for improving its yields of some industrial products through genetic approaches.


Asunto(s)
Aureobasidium , Regulación Fúngica de la Expresión Génica , Glucanos , Melaninas , Glucanos/biosíntesis , Glucanos/metabolismo , Melaninas/biosíntesis , Aureobasidium/metabolismo , Aureobasidium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Mol Biol ; 114(3): 43, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630371

RESUMEN

The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.


Asunto(s)
Phaseolus , Phaseolus/genética , Factores de Transcripción GATA/genética , Agrobacterium , Secuencia de Aminoácidos , Sequías , Reguladores del Crecimiento de las Plantas
10.
Medicine (Baltimore) ; 103(12): e37487, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518015

RESUMEN

GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.


Asunto(s)
Factores de Transcripción GATA , Neoplasias Hematológicas , Humanos , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular , Hematopoyesis/genética , Neoplasias Hematológicas/genética
11.
Elife ; 122024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446031

RESUMEN

The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G-protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM (transient receptor potential melastatin) gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Quimiotaxis , Factores de Transcripción GATA , Inmunidad , Intestinos , Células Receptoras Sensoriales
12.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346193

RESUMEN

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Intercambio Materno-Fetal , Embarazo , Femenino , Humanos , Animales , Ratones , Placenta , Trofoblastos , Diferenciación Celular/fisiología , Desarrollo Fetal , Factores de Transcripción GATA
13.
Curr Genet ; 70(1): 1, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353733

RESUMEN

GATA family transcription factors (GATA-TFs) are metalloproteins that regulate many metabolic pathways. These conserved proteins recognize the consensus sequence (A/T)GATA(A/G) in the promoter regions of many genes and regulate their transcription in response to environmental signals. Currently, the study of GATA-TFs is of increasing interest. GATA genes and their proteins are most actively studied in vascular plants and fungi. Based on the results of numerous studies, it has been shown that GATA factors regulate the metabolic pathways of nitrogen and carbon, and also play a major role in the processes induced by light and circadian rhythms. In algae, GATA-TFs remain poorly studied, and information about them is scattered. In this work, all known data on GATA-TFs in the unicellular green alga Chlamydomonas reinhardtii has been collected and systematized. The genome of this alga contains 12 GATA coding genes. Using the phylogenetic analysis, we identified three classes of GATA factors in C. reinhardtii according to the structure of the zinc finger domain and showed their difference from the classification of GATA factors developed on vascular plants.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Filogenia , Carbono , Ritmo Circadiano , Factores de Transcripción GATA/genética
14.
Plant Mol Biol ; 114(1): 15, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329633

RESUMEN

Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.


Asunto(s)
Arabidopsis , Alcaloides de Triptamina Secologanina , Uncaria , Luz , Luz Roja , Factores de Transcripción GATA
15.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377146

RESUMEN

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Asunto(s)
Neoplasias de la Mama , Cromatina , Dedos , Enfermedades del Cabello , Síndrome de Langer-Giedion , Nariz , Femenino , Humanos , Neoplasias de la Mama/genética , Cromatina/genética , Receptor alfa de Estrógeno/genética , Dedos/anomalías , Factores de Transcripción GATA , Expresión Génica , Genes cdc , Nariz/anomalías , Proteínas Represoras/genética
16.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255805

RESUMEN

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Asunto(s)
Sapindaceae , Sapindaceae/genética , Intrones , Factores de Transcripción GATA/genética , Hormonas
17.
Transl Psychiatry ; 14(1): 33, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238293

RESUMEN

GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.


Asunto(s)
Discapacidad Intelectual , Proteínas Represoras , Humanos , Animales , Ratones , Factores de Transcripción GATA/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Factores de Transcripción/genética , Histona Desacetilasas , Síndrome , Proteínas Supresoras de Tumor
18.
BMC Plant Biol ; 23(1): 611, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041099

RESUMEN

BACKGROUND: GATA transcription factors are type IV zinc-finger proteins that play key roles in plant growth and responses to environmental stimuli. Although these proteins have been studied in model plants, the related studies of GATA gene family under abiotic stresses are rarely reported in grapevine (Vitis vinifera L.). RESULTS: In the current study, a total of 23 VviGATA genes were identified in grapevine and classified into four groups (I, II, III, and IV), based on phylogenetic analysis. The proteins in the same group exhibited similar exon-intron structures and conserved motifs and were found to be unevenly distributed among the thirteen grapevine chromosomes. Accordingly, it is likely that segmental and tandem duplication events contributed to the expansion of the VviGATA gene family. Analysis of cis-acting regulatory elements in their promoters suggested that VviGATA genes respond to light and are influenced by multiple hormones and stresses. Organ/tissue expression profiles showed tissue specificity for most of the VviGATA genes, and five were preferentially upregulated in different fruit developmental stages, while others were strongly induced by drought, salt and cold stress treatments. Heterologously expressed VamGATA5a, VamGATA8b, VamGATA24a, VamGATA24c and VamGATA24d from cold-resistant V. amurensis 'Shuangyou' showed nuclear localization and transcriptional activity was shown for VamGATA5a, VamGATA8b and VamGATA24d. CONCLUSIONS: The results of this study provide useful information for GATA gene function analysis and aid in the understanding of stress responses in grapevine for future molecular breeding initiatives.


Asunto(s)
Factores de Transcripción GATA , Vitis , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Vitis/metabolismo , Filogenia , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Familia de Multigenes
19.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923140

RESUMEN

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Asunto(s)
Antígeno 2 Relacionado con Fos , Factores de Transcripción GATA , Glutarredoxinas , Homeostasis , Proteínas Hierro-Azufre , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932452

RESUMEN

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Asunto(s)
Factores de Transcripción GATA , ARN Largo no Codificante , Animales , Femenino , Ratones , Fertilización/genética , Factores de Transcripción GATA/genética , Mamíferos , ARN Largo no Codificante/genética , Regulación hacia Arriba , Cromosoma X , Inactivación del Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA