Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.037
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731604

RESUMEN

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Asunto(s)
Diferenciación Celular , FN-kappa B , Factores de Transcripción NFATC , Osteoclastos , Pleurotus , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Transducción de Señal , Animales , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Células RAW 264.7 , Ligando RANK/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Pleurotus/química , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/química , Oligosacáridos/farmacología , Oligosacáridos/química , Osteogénesis/efectos de los fármacos
2.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38604070

RESUMEN

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Asunto(s)
Resorción Ósea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacología , Factores de Transcripción NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Osteogénesis , Ligando RANK/metabolismo
3.
Mol Biol Rep ; 51(1): 587, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683225

RESUMEN

BACKGROUND: Patients with multiple myeloma exhibit malignant osteolytic bone disease due to excessive osteoclast formation and function. We recently identified that osteoclastogenic stimulator selenoprotein W (SELENOW) is upregulated via ERK signaling and downregulated via p38 signaling during receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation. In the intrinsic physiological process, RANKL-induced downregulation of SELENOW maintains proper osteoclast differentiation; in contrast, forced overexpression of SELENOW leads to overactive osteoclast formation and function. METHODS AND RESULTS: We observed that SELENOW is highly expressed in multiple myeloma-derived peripheral blood mononuclear cells (PBMCs) and mature osteoclasts when compared to healthy controls. Also, the level of tumor necrosis factor alpha (TNFα), a pathological osteoclastogenic factor, is increased in the PBMCs and serum of patients with multiple myeloma. ERK activation by TNFα was more marked and sustained than that by RANKL, allowing SELENOW upregulation. Excessive expression of SELENOW in osteoclast progenitors and mature osteoclasts derived from multiple myeloma facilitated efficient nuclear translocation of osteoclastogenic transcription factors NF-κB and NFATc1, which are favorable for osteoclast formation. CONCLUSION: Our findings suggest a possibility that feedforward signaling of osteoclastogenic SELENOW by TNFα derived from multiple myeloma induces overactive osteoclast differentiation, leading to bone loss during multiple myeloma.


Asunto(s)
Diferenciación Celular , Mieloma Múltiple , Osteoclastos , Selenoproteína W , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Diferenciación Celular/genética , Leucocitos Mononucleares/metabolismo , Sistema de Señalización de MAP Quinasas , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/genética , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Selenoproteína W/metabolismo , Selenoproteína W/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653977

RESUMEN

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Asunto(s)
Peróxido de Hidrógeno , Estrés Oxidativo , Factores de Transcripción , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Factores de Transcripción NFATC/metabolismo , Glucosa Oxidasa/metabolismo , Animales
5.
Biomed Pharmacother ; 173: 116422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471268

RESUMEN

Osteoporosis, characterized by low bone mass and bone microarchitecture breakdown, has become a growing public health problem. The increase in oxidative stress could lead to an imbalance between osteoblasts-mediated osteogenesis and osteoclast-mediated bone resorption, which gives rise to osteoporosis. Nrf2 is a master transcription factor that regulates oxidative stress and has recently been reported to take part in the development of osteoporosis. Icariin, a leading active flavonoid in herbal Epimedium pubescens, has significant antioxidant activity in and is widely applied for treating bone diseases. In this study, we aimed to explore the effect of icariin on osteoclastogenesis and its potential mechanism from the perspective of oxidative stress inhibition, using ovariectomized (OVX) rats and RANKL-induced RAW264.7 cells. Our results demonstrated that icariin-treated OVX rats exhibited higher bone density, fewer tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower ROS levels in bone tissues than vehicle-treated OVX rats. Also, icariin suppressed osteoclast differentiation and inhibited the expression of osteoclastogenesis-related genes, such as NFATc1, Ctsk, Trap, and c-Fos, in RANKL-induced RAW264.7 cells. Icariin also reduced intracellular ROS levels by increasing the expression of nuclear Nrf2 and HO-1. Further mechanistic studies showed icariin inhibited Cullin 3 expression and could delay Nrf2 degradation by reducing the ubiquitination of endogenous Nrf2 in RANKL-stimulated RAW264.7 cells, and these effects were markedly reversed by cullin three overexpression. These findings suggest icariin alleviated osteoporosis by suppressing osteoclastogenesis via targeting the Cullin 3/Nrf2/OH signaling pathway. Our study implied that icariin may be a potential candidate to treat osteoporosis.


Asunto(s)
Osteoclastos , Osteoporosis , Ratas , Animales , Proteínas Cullin/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteogénesis , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo , FN-kappa B/metabolismo
6.
Phytomedicine ; 128: 155431, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537440

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Estrés del Retículo Endoplásmico , Neoplasias Pulmonares , Factores de Transcripción NFATC , Abietanos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/metabolismo , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Proto-Oncogenes Mas , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor de Muerte Celular Programada 1 , Inmunoterapia/métodos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células A549 , Ratones Desnudos , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-myc/metabolismo , Masculino , Femenino
8.
mBio ; 15(4): e0039224, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38411085

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Asunto(s)
COVID-19 , SARS-CoV-2 , Transducción de Señal , Proteínas no Estructurales Virales , Humanos , Antivirales , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , COVID-19/virología , Ciclosporina/farmacología , Factores de Transcripción NFATC/metabolismo , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/metabolismo
9.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421307

RESUMEN

Interactions between notochord and sclerotome are required for normal embryonic spine patterning, but whether the postnatal derivatives of these tissues also require interactions for postnatal intervertebral disc (IVD) growth and maintenance is less established. We report here the comparative analysis of four conditional knockout mice deficient for TonEBP, a transcription factor known to allow cells to adapt to changes in extracellular osmotic pressure, in specific compartments of the IVD. We show that TonEBP deletion in nucleus pulposus (NP) cells does not affect their survival or aggrecan expression, but promoted cell proliferation in the NP and in adjacent vertebral growth plates (GPs). In cartilage end plates/GPs, TonEBP deletion induced cell death, but also structural alterations in the adjacent NP cells and vertebral bodies. Embryonic or postnatal TonEBP loss generated similar IVD changes. In addition to demonstrating the requirement of TonEBP in the different compartments of the IVD, this comparative analysis uncovers the in vivo interdependency of the different IVD compartments during the growth of the postnatal IVD-vertebral units.


Asunto(s)
Disco Intervertebral , Factores de Transcripción NFATC , Animales , Ratones , Regulación de la Expresión Génica , Disco Intervertebral/metabolismo , Ratones Noqueados , Presión Osmótica , Factores de Transcripción/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo
10.
Mar Drugs ; 22(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38393066

RESUMEN

The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the process of bone remodeling. Excessive osteoclast differentiation plays a pivotal role in the pathogenesis of bone diseases such as rheumatoid arthritis and osteoporosis. In the present study, we examined whether 7,8-epoxy-11-sinulariolide acetate (Esa), a marine natural product present in soft coral Sinularia siaesensis, attenuates inflammation and osteoclastogenesis in vitro. The results indicated that Esa significantly inhibited lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells and suppressed receptor activator for nuclear factor-κB ligand (RANKL)-triggered osteoclastogenesis. Esa significantly down-regulated the protein expression of iNOS, COX-2, and TNF-α by inhibiting the NF-κB/MAPK/PI3K pathways and reducing the release of reactive oxygen species (ROS) in RAW264.7 macrophages. Besides, Esa treatment significantly inhibited osteoclast differentiation and suppressed the expression of osteoclast-specific markers such as NFATC1, MMP-9, and CTSK proteins. These findings suggest that Esa may be a potential agent for the maintenance of bone homeostasis associated with inflammation.


Asunto(s)
Antozoos , Resorción Ósea , Diterpenos , Animales , Osteogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular , Osteoclastos , FN-kappa B/metabolismo , Inflamación/metabolismo , Antozoos/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo
11.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338716

RESUMEN

Transcription factors within microglia contribute to the inflammatory response following intracerebral hemorrhage (ICH). Therefore, we employed bioinformatics screening to identify the potential transcription factor tonicity-responsive enhancer-binding protein (TonEBP) within microglia. Inflammatory stimuli can provoke an elevated expression of TonEBP in microglia. Nevertheless, the expression and function of microglial TonEBP in ICH-induced neuroinflammation remain ambiguous. In our recent research, we discovered that ICH instigated an increased TonEBP in microglia in both human and mouse peri-hematoma brain tissues. Furthermore, our results indicated that TonEBP knockdown mitigates lipopolysaccharide (LPS)-induced inflammation and the activation of NF-κB signaling in microglia. In order to more deeply comprehend the underlying molecular mechanisms of how TonEBP modulates the inflammatory response, we sequenced the transcriptomes of TonEBP-deficient cells and sought potential downstream target genes of TonEBP, such as Pellino-1 (PELI1). PELI has been previously reported to mediate nuclear factor-κB (NF-κB) signaling. Through the utilization of CUT & RUN, a dual-luciferase reporter, and qPCR, we confirmed that TonEBP is the transcription factor of Peli1, binding to the Peli1 promoter. In summary, TonEBP may enhance the LPS-induced inflammation and activation of NF-κB signaling via PELI1.


Asunto(s)
Hemorragia Cerebral , Microglía , Factores de Transcripción NFATC , Animales , Humanos , Ratones , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338818

RESUMEN

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Asunto(s)
Calcineurina , Insuficiencia Cardíaca , Canales Catiónicos TRPV , Remodelación Ventricular , Animales , Ratones , Calcineurina/metabolismo , Células Cultivadas , Fibrosis , Insuficiencia Cardíaca/metabolismo , Isoproterenol , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Remodelación Ventricular/genética
13.
Arch Oral Biol ; 161: 105912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382164

RESUMEN

OBJECTIVES: D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN: Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS: The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION: D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.


Asunto(s)
Resorción Ósea , Osteogénesis , Animales , Ratones , Sistema de Señalización de MAP Quinasas , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Macrófagos/metabolismo , Osteoclastos , Diferenciación Celular , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/metabolismo , Resorción Ósea/metabolismo , Factores de Transcripción NFATC/metabolismo
14.
Mol Med ; 30(1): 27, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378457

RESUMEN

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Asunto(s)
Resorción Ósea , Luteolina , Osteoporosis , Femenino , Ratas , Animales , Resorción Ósea/patología , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas , Farmacología en Red , Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoporosis/tratamiento farmacológico , Factores de Transcripción NFATC/metabolismo
15.
Bone ; 181: 117036, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311303

RESUMEN

Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.


Asunto(s)
Aldehído Oxidorreductasas , Resorción Ósea , Osteólisis , Animales , Ratones , Osteogénesis/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Oxidorreductasas/uso terapéutico , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Resorción Ósea/metabolismo , FN-kappa B/metabolismo , Diferenciación Celular , Osteólisis/metabolismo , Ligando RANK/metabolismo
16.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358766

RESUMEN

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente
17.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363296

RESUMEN

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas E7 de Papillomavirus/inmunología , Proteínas E7 de Papillomavirus/genética , Biblioteca de Genes , Células Presentadoras de Antígenos/inmunología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/inmunología , Línea Celular Tumoral , FN-kappa B/metabolismo , Sinapsis Inmunológicas/inmunología , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 16/genética , Femenino
18.
J Med Chem ; 67(4): 2602-2618, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38301128

RESUMEN

To discover novel osteoclast-targeting antiosteoporosis leads from natural products, we identified 40 tanzawaic acid derivatives, including 22 new ones (1-8, 14-19, 27-32, 37, and 38), from the South China Sea mangrove-derived fungus Penicillium steckii SCSIO 41025. Penicisteck acid F (2), one of the new derivatives showing the most potent NF-κB inhibitory activity, remarkably inhibited osteoclast generation in vitro. Mechanistically, 2 reduced RANKL-induced IκBα degradation, NF-κB p65 nuclear translocation, the activation and nuclear translocation of NFATc1, and the relevant mRNA expression. NF-κB p65 could be a potential molecular target for 2, which has been further determined by the cellular thermal shift assay, surface plasmon resonance, and the gene knock-down assay. Moreover, 2 could also alleviate osteoporosis in ovariectomized mice by reducing the quantities of osteoclasts. Our finding offered a novel potential inhibitor of osteoclastogenesis and osteoporosis for further development of potent antiosteoporosis agents.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Ratones , FN-kappa B/metabolismo , Osteogénesis , Regulación hacia Abajo , Resorción Ósea/tratamiento farmacológico , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Diferenciación Celular , Factores de Transcripción NFATC/metabolismo
19.
Mol Med ; 30(1): 20, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310228

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.


Asunto(s)
Artritis Reumatoide , Factores de Transcripción NFATC , Humanos , Artritis Reumatoide/genética , Diferenciación Celular/fisiología , FN-kappa B/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Linfocitos T/metabolismo
20.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396794

RESUMEN

Rosavin, a phenylpropanoid in Rhodiola rosea's rhizome, and an adaptogen, is known for enhancing the body's response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin's impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions.


Asunto(s)
Resorción Ósea , Disacáridos , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo , Osteogénesis , Resorción Ósea/metabolismo , Diferenciación Celular , FN-kappa B/metabolismo , Metaloproteasas/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...