Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Commun Biol ; 7(1): 565, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745044

RESUMEN

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Progresión de la Enfermedad , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Factores de Transcripción SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Persona de Mediana Edad , Línea Celular Tumoral , Animales , Ratones , Proliferación Celular/genética , Ratones Desnudos , Pronóstico , Ratones Endogámicos BALB C
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 204-211, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650133

RESUMEN

Circular RNAs (circRNAs) are engaged in various types of cancers. This study aimed to investigate the roles of circ_0006743 (circ_JMJD1C) in breast cancer. The downstream of circ_JMJD1C and their interaction network was determined by bioinformatic analyses. Gene expression were analyzed through western blot and qRT-PCR assays. Functional assays were conducted in vitro and in vivo to verify circ_JMJD1C role in BC. FISH and confocal analysis indicated the cellular distribution of circ_JMJD1C. Luciferase reporter, RNA immune-precipitation (RIP) assays, as well as Pearson's correlation analysis, were implemented to test the relation of miR-182-5p, JMJD1C and circ_JMJD1C. Circ_JMJD1C and JMJD1C expression were both elevated, and their expression was positively correlated in BC. Circ_ JMJD1C knockdown hindered BC cell proliferation, invasion, and migration, along with epithelial-mesenchymal transition (EMT) in vitro and in vivo. Circ_JMJD1C facilitated BC progression by the miR-182-5p-JMJD1C axis. Circ_JMJD1C epigenetically upregulated SOX4. Circ_JMJD1C promotes the aggressiveness of BC via regulating miR-182-5p/JMJD1C/SOX4 axis. This may provide a novel and promising therapy targeting BC.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs , Oxidorreductasas N-Desmetilantes , ARN Circular , Factores de Transcripción SOXC , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Masculino
3.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653778

RESUMEN

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Asunto(s)
Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Factores de Transcripción SOXC , Tretinoina , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Linaje de la Célula/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
4.
J Biochem Mol Toxicol ; 38(4): e23703, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605439

RESUMEN

Acute renal failure (ARF) is a huge threat to the lives of most patients in intensive care units, and there is currently no satisfactory treatment strategy. SRY-box transcription factor 4 (SOX4) plays a key role in the development of various diseases, but its effect on ARF is unknown. Therefore, this study aimed to explore the relationship between SOX4 and ARF. Blood samples were collected from 20 ARF patients and 20 healthy volunteers. We also established an ARF rat model by excising the right kidney and ligating the left renal artery, and SOX4 knockdown in ARF rats was achieved down by means of lentiviral infection. Subsequently, we used quantitative polymerase chain reaction and western bolt assays to detect the expression levels of SOX4 and nuclear factor-κB (NF-κB) signaling pathway-related proteins in human blood or rat renal tissue and hematoxylin and eosin and terminal deoxynucleotidyl transferase (TdT) 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling staining to observe the pathological changes and apoptosis of renal tissue. Enzyme-linked immunosorbent assay and biochemical kits were used to measure the levels of renal function-related indicators (blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin) and inflammatory factors (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha), as well as changes in oxidative stress-related indicators (malondialdehyde [MDA], superoxide dismutase [SOD], and reactive oxygen species [ROS]) in rat serum. SOX4 expression levels in blood samples from ARF patients and renal tissue from ARF rats were significantly higher compared with those in healthy volunteers and control rats, respectively. ARF model rats displayed the typical ARF phenotype, while SOX4 silencing significantly improved pathological injury and apoptosis of renal tissue in ARF rats. Moreover, SOX4 silencing significantly inhibited increased levels of renal function-related indicators and inflammatory factors and reduced the level of excessive oxidative stress (MDA and ROS were upregulated, and SOD was downregulated) in ARF rats. SOX4 also reduced the activity of the NF-κB signaling pathway in ARF samples. Thus, SOX4 knockdown may reduce oxidative stress, the inflammatory response, and apoptosis by reducing the activity of the NF-κB signaling pathway, thereby improving renal injury in ARF rats.


Asunto(s)
Lesión Renal Aguda , Apoptosis , FN-kappa B , Estrés Oxidativo , Factores de Transcripción SOXC , Transducción de Señal , Animales , Humanos , Ratas , Lesión Renal Aguda/metabolismo , Riñón , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Superóxido Dismutasa/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 90-94, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678622

RESUMEN

Breast cancer (BC) is one of the most common fatal cancers. Recent studies have identified the vital role of long noncoding RNA (lncRNAs) in the development and progression of BC. In this research, lncRNA PCAT-1 was studied to identify how it functioned in the metastasis of BC. PCAT-1 expression of tissues was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in 50 BC patients. Cell proliferation, wound healing assay and transwell assay were used to observe the biological behavior changes of BC cells through knockdown or overexpression of PCAT-1. In addition, RT-qPCR and Western blot assay were performed to discover the potential target protein of PCAT-1 in BC. PCAT-1 expression level in BC samples was higher than that of adjacent ones. Besides, cell proliferation, migrated ability and cell invaded ability of BC cells were inhibited after PCAT-1 was silenced. Cell proliferation, migration and invasion of BC cells were promoted after PCAT-1 was overexpressed. In addition, SOX4 was downregulated after silence of PCAT-1 in BC cells, while SOX4 was upregulated after overexpression of PCAT-1 in BC cells. Furthermore, SOX4 was upregulated in BC tissues and was positively associated with PCAT-1. Our study uncovers a new oncogene in BC and suggests that PCAT-1 could enhance BC cell proliferation, migration and invasion via targeting SOX4, which provided a novel therapeutic target for BC patients.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , ARN Largo no Codificante , Factores de Transcripción SOXC , Humanos , Proliferación Celular/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Persona de Mediana Edad
6.
Nat Commun ; 15(1): 2956, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580651

RESUMEN

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Adulto , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo
7.
Sci Rep ; 14(1): 7863, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570586

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Resistencia a Antineoplásicos/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Oxidación-Reducción , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
8.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447391

RESUMEN

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Asunto(s)
Células de la Granulosa , Vía de Señalización Hippo , Femenino , Animales , Humanos , Línea Celular Tumoral , Células de la Granulosa/metabolismo , Proliferación Celular , Apoptosis , Mamíferos/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Co-Represoras/metabolismo
9.
Biochem Pharmacol ; 222: 116079, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402910

RESUMEN

Breast cancer is one of the main causes of malignancy-related deaths globally and has a significant impact on women's quality of life. Despite significant therapeutic advances, there is a medical need for targeted therapies in breast cancer. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor mediates responses to environment stimuli, is emerging as a unique pleiotropic target. Herein, a combined molecular simulation and in vitro investigations identified 3-(3-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine (3FPP) as a novel AhR ligand in T47D and MDA-MB-231 breast cancer cells. Its agonistic effects induced formation of the AhR-AhR nuclear translocator (Arnt) heterodimer and prompted its binding to the penta-nucleotide sequence, called xenobiotic-responsive element (XRE) motif. Moreover, 3FPP augmented the promoter-driven luciferase activities and expression of AhR-regulated genes encoding cytochrome P450 1A1 (CYP1A1) and microRNA (miR)-212/132 cluster. It reduced cell viability, migration, and invasion of both cell lines through AhR signaling. These anticancer properties were concomitant with reduced levels of B-cell lymphoma 2 (BCL-2), SRY-related HMG-box4 (SOX4), snail family zinc finger 2 (SNAI2), and cadherin 2 (CDH2). In vivo, 3FPP suppressed tumor growth and activated AhR signaling in an orthotopic mouse model. In conclusion, our results introduce the fused pyrazolopyridine 3FPP as a novel AhR agonist with AhR-specific anti-breast cancer potential in vitro and in vivo.


Asunto(s)
Neoplasias de la Mama , Pirazoles , Receptores de Hidrocarburo de Aril , Animales , Ratones , Femenino , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Calidad de Vida , Citocromo P-450 CYP1A1/metabolismo , Neoplasias de la Mama/genética , Piridinas/farmacología , Piridinas/uso terapéutico , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Factores de Transcripción SOXC/metabolismo
10.
Genes (Basel) ; 15(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38397232

RESUMEN

Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.


Asunto(s)
Neurogénesis , Factores de Transcripción SOXC , Proteínas de Xenopus , Xenopus laevis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Dominios Proteicos
11.
Dig Dis Sci ; 69(3): 835-850, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240850

RESUMEN

BACKGROUND: Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS: To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS: In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS: GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION: The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.


Asunto(s)
Neoplasias Colorrectales , Histona Desacetilasa 2 , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción SOXC , Humanos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo
12.
J Transl Med ; 22(1): 9, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169402

RESUMEN

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Asunto(s)
Nefropatías Diabéticas , Ferroptosis , Cálculos Renales , Humanos , Ratones , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Oxalato de Calcio , Histonas/metabolismo , Epigénesis Genética , Riñón/patología , Nefropatías Diabéticas/metabolismo , Cálculos Renales/patología , ARN/metabolismo , Factores de Transcripción SOXC/metabolismo , Sistema de Transporte de Aminoácidos y+
13.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38237141

RESUMEN

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
14.
Am J Med Sci ; 367(1): 49-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939881

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion (I/R), a harmful process in the treatment of cardiovascular diseases, can cause secondary damage to the cardiac tissues. Circular RNAs (circRNAs) are important regulators in a number of cardiac disorders. However, the role of circHDAC9 in myocardial I/R injury has not been clarified. METHODS: Human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R) and mice were subjected to I/R. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to analyze the expression of circHDAC9, miR-671-5p, and SOX4, and western blot was used to detect SOX4 protein. The binding relationship among circHDAC9, miR-671-5p, and SOX4 was confirmed by RNA pull-down, luciferase, and RNA immunoprecipitation (RIP) assays. The effects of circHDAC9/miR-671-5p/SOX4 axis on the apoptosis, oxidative stress and inflammation were evaluated in both myocardial I/R injury models. RESULTS: The expression of circHDAC9 and SOX4 was noticeably elevated, whereas miR-671-5p expression was downregulated in both myocardial I/R injury models. circHDAC9 knockdown significantly reduced the apoptosis, activities of caspase-3 and caspase-9, ROS intensity, MDA activity, and concentrations of TNF-α, IL-1ß, and IL-6, but increased the viability and SOD activity in H/R-treated HCMs. Suppression of circHDAC9 dramatically reduced the levels of circHDAC9 and SOX4, while enhanced miR-671-5p expression in H/R-treated HCMs. CircHDAC9 functioned via sponging miR-671-5p to regulate SOX4 expression in vitro. Additionally, silencing of circHDAC9 improved the pathological abnormalities and cardiac dysfunction, and reduced the apoptosis, oxidative stress and inflammation in mice with myocardial I/R injury. CONCLUSIONS: Inhibition of circHDAC9 significantly improved myocardial I/R injury by regulating miR-671-5p/SOX4 signaling pathway.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , ARN Circular , Animales , Humanos , Ratones , Apoptosis , Inflamación/patología , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Transducción de Señal , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/farmacología , ARN Circular/metabolismo
15.
Anticancer Res ; 43(12): 5437-5446, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030167

RESUMEN

BACKGROUND/AIM: PHD and RING finger domain-containing protein 1 (PHRF1) ubiquitinates TGIP (TG-interacting protein) and redistributes cPML (cytoplasmic variant of PML) to the cytoplasm to enhance TGF-ß signaling by. It is unclear whether PHRF1 affects invasion and survival when both mutations of the activated oncogene Kras and inactivation of the tumor suppressor p53 are present. MATERIALS AND METHODS: We knockout PHRF1 expression using Crispr-Cas9 editing in HCT116-p53-/- (KrasG13D/p53-/-) cells and analyzed the expression profile in HCT116-p53-/-PHRF1-/- cells. RESULTS: In contrast to lung cancer A549 (KrasG12S/p53wt) cells, the expression of Zeb1, a transcription factor for epidermal-mesenchymal transition (EMT), was not affected in PHRF1-knockout HCT116 p53-/- cells. Instead, SOX4 displayed a significant contribution to the impaired invasion in HCT116-p53-/-PHRF1-/- cells. Mechanistically, the C-terminal SRI domain of PHRF1 was required for both transwell invasion and SOX4 expression. The reintroduction of SOX4 into HCT116-p53-/- PHRF1-/- cells partially restored their invasive capability. CONCLUSION: This study sheds light on the role of PHRF1 in the invasion of colorectal cancer HCT116-p53-/- cells, which harbor the oncogenic KrasG13D mutation and lack p53. These findings provide novel insights regarding the role of PHRF1 in invasion by modulating SOX4 expression in colorectal cancer HCT116-p53-/- cells.


Asunto(s)
Neoplasias Colorrectales , Proteínas de la Membrana , Factores de Transcripción SOXC , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
16.
Tissue Cell ; 85: 102224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783027

RESUMEN

The conditioned medium of mesenchymal stem cells (MSCs) has controversial roles in cancer, either promoting or suppressing tumor growth. Our research on the results of adipose tissue-derived MSC (AD-MSC)-conditioned media on U87 glioma cells was motivated by the disputed role of mesenchymal stem cells (MSCs) in cancer, which may either promote or inhibit tumor growth. Using flow cytometry, AD-MSCs were identified, verified, and their conditioned media was used to treat U87 cells. Through RT-qPCR, scratch assay, and apoptosis analysis, we evaluated gene expression (SOX4, H19, and CCAT1), cell migration, and apoptosis in U87 cells.The conditioned media greatly increased the expression of SOX4 and H19, but not CCAT1. Although there were few differences in migration and apoptosis, both were slightly increased in the treated group.These outcomes have drawn attention to the complexity of the interactions between MSCs and glioma cells. This complexity requires further research to identify the specific mechanisms governing MSC-mediated impacts on the development of glioblastoma multiforme (GBM).


Asunto(s)
Glioma , Células Madre Mesenquimatosas , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Línea Celular Tumoral , Glioma/genética , Glioma/metabolismo , Glioma/patología , Células Madre Mesenquimatosas/metabolismo , Apoptosis/genética , Movimiento Celular/genética , Expresión Génica , Proliferación Celular/genética , Factores de Transcripción SOXC/metabolismo
17.
Clin. transl. oncol. (Print) ; 25(10): 2812-2831, oct. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-225062

RESUMEN

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells (AU)


Asunto(s)
Humanos , Femenino , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción SOXC/metabolismo , Transducción de Señal/genética
18.
Eur J Pharmacol ; 958: 176071, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37741429

RESUMEN

Pathological cardiac hypertrophy can lead to heart failure, making its prevention crucial. SOX4, a SOX transcription factor, regulates tissue growth and development, although its role in pathological cardiac hypertrophy is unclear. We found that the SOX4 expression was elevated in hypertrophic hearts and angiotensin II (Ang II)-treated neonatal rat cardiomyocytes (NRCMs), and knocking down the SOX4 expression in NRCMs and mouse hearts significantly reduced the hypertrophic response. Mechanistically, SOX4 can bind to the SIRT3 promoter, inhibit SIRT3 transcription and expression, and thus affect downstream MnSOD acetylation levels, leading to abnormal increases in ROS and oxidative stress levels and promoting the occurrence of cardiac hypertrophy. In conclusion, this study identified a new role for SOX4 in regulating cardiac hypertrophy, and decreasing SOX4 expression may be a potential treatment for pathological cardiac hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción SOXC , Sirtuina 3 , Animales , Ratones , Ratas , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Sirtuina 3/metabolismo , Factores de Transcripción SOXC/metabolismo
19.
Cell Mol Life Sci ; 80(8): 239, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540379

RESUMEN

Retinal ganglion cells (RGCs) are essential for vision perception. In glaucoma and other optic neuropathies, RGCs and their optic axons undergo degenerative change and cell death; this can result in irreversible vision loss. Here we developed a rapid protocol for directly inducing RGC differentiation from human induced pluripotent stem cells (hiPSCs) by the overexpression of ATOH7, BRN3B, and SOX4. The hiPSC-derived RGC-like cells (iRGCs) show robust expression of various RGC-specific markers by whole transcriptome profiling. A functional assessment was also carried out and this demonstrated that these iRGCs display stimulus-induced neuronal activity, as well as spontaneous neuronal activity. Ethambutol (EMB), an effective first-line anti-tuberculosis agent, is known to cause serious visual impairment and irreversible vision loss due to the RGC degeneration in a significant number of treated patients. Using our iRGCs, EMB was found to induce significant dose-dependent and time-dependent increases in cell death and neurite degeneration. Western blot analysis revealed that the expression levels of p62 and LC3-II were upregulated, and further investigations revealed that EMB caused a blockade of lysosome-autophagosome fusion; this indicates that impairment of autophagic flux is one of the adverse effects of that EMB has on iRGCs. In addition, EMB was found to elevate intracellular reactive oxygen species (ROS) levels increasing apoptotic cell death. This could be partially rescued by the co-treatment with the ROS scavenger NAC. Taken together, our findings suggest that this iRGC model, which achieves both high yield and high purity, is suitable for investigating optic neuropathies, as well as being useful when searching for potential drugs for therapeutic treatment and/or disease prevention.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Nervio Óptico , Humanos , Células Ganglionares de la Retina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades del Nervio Óptico/metabolismo , Apoptosis , Etambutol/farmacología , Etambutol/metabolismo , Factores de Transcripción SOXC/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585469

RESUMEN

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción SOXC , Animales , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Diferenciación Celular , Factores de Transcripción/metabolismo , Epigénesis Genética , Órgano Espiral , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...