Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Curr Opin Struct Biol ; 84: 102766, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181687

RESUMEN

RNA polymerase II (Pol II) transcription is regulated by many elongation factors. Among these factors, TFIIF, PAF-RTF1, ELL and Elongin stimulate mRNA chain elongation by Pol II. Cryo-EM structures of Pol II complexes with these elongation factors now reveal some general principles on how elongation factors bind Pol II and how they stimulate transcription. All four elongation factors contact Pol II at domains external 2 and protrusion, whereas TFIIF and ELL additionally bind the Pol II lobe. All factors apparently stabilize cleft-flanking elements, whereas RTF1 and Elongin additionally approach the active site with a latch element and may influence catalysis or translocation. Due to the shared binding sites on Pol II, factor binding is mutually exclusive, and thus it remains to be studied what determines which elongation factors bind at a certain gene and under which condition.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción TFII , ARN Polimerasa II/química , Elonguina/genética , Elonguina/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Sitios de Unión , Transcripción Genética
2.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
3.
Nature ; 594(7861): 129-133, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33902108

RESUMEN

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1-6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator-PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions observed in the corresponding complex in yeast7-9. The metazoan subunits MED27-MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.


Asunto(s)
Microscopía por Crioelectrón , Complejo Mediador/química , Complejo Mediador/ultraestructura , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , ADN Complementario/genética , Humanos , Complejo Mediador/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Iniciación de la Transcripción Genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
4.
J Biol Chem ; 296: 100226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361159

RESUMEN

Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas Intrínsecamente Desordenadas/química , Complejo Correpresor Histona Desacetilasa y Sin3/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Factores de Transcripción/química , Factores de Transcripción p300-CBP/química , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
5.
Biomolecules ; 10(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906795

RESUMEN

Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.


Asunto(s)
Nucleótidos/química , Nucleótidos/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Dominio Catalítico , ADN/química , Difusión , Humanos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , Factores de Transcripción TFII/química , Transcripción Genética
6.
Biochem Soc Trans ; 48(5): 1917-1927, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32915199

RESUMEN

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


Asunto(s)
ARN Polimerasa I/metabolismo , ARN Ribosómico/metabolismo , Factores de Transcripción TFII/química , Animales , Cromatina/metabolismo , Dimerización , Humanos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
7.
Nucleic Acids Res ; 47(19): 10313-10326, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31529052

RESUMEN

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/ß) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3'-5' DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.


Asunto(s)
ARN Polimerasa III/química , Factores de Transcripción TFII/genética , Transcripción Genética , Adenosina Trifosfato , ADN Helicasas/química , ADN Helicasas/genética , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Polimerasa III/genética , Factores de Transcripción TFII/química
8.
Nat Struct Mol Biol ; 26(6): 397-406, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110295

RESUMEN

Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly's global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE-p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics.


Asunto(s)
Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/metabolismo , Iniciación de la Transcripción Genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Mapas de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Factor de Transcripción TFIIH/química , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/química
9.
Nature ; 553(7688): 301-306, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345637

RESUMEN

RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4-4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa II/química , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Moldes Genéticos , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química
10.
Nature ; 553(7688): 295-300, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345638

RESUMEN

RNA polymerase III (Pol III) and transcription factor IIIB (TFIIIB) assemble together on different promoter types to initiate the transcription of small, structured RNAs. Here we present structures of Pol III preinitiation complexes, comprising the 17-subunit Pol III and the heterotrimeric transcription factor TFIIIB, bound to a natural promoter in different functional states. Electron cryo-microscopy reconstructions, varying from 3.7 Å to 5.5 Å resolution, include two early intermediates in which the DNA duplex is closed, an open DNA complex, and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight, multivalent interaction between TFIIIB and promoter DNA, and explain how TFIIIB recruits Pol III. Together, TFIIIB and Pol III subunit C37 activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate the melting of double-stranded DNA, in a mechanism similar to that of the Pol II system.


Asunto(s)
Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Sitios de Unión , Dominio Catalítico , ADN/química , Modelos Biológicos , Modelos Moleculares , Unión Proteica , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química , Iniciación de la Transcripción Genética
11.
Structure ; 26(1): 145-152.e3, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29225078

RESUMEN

The androgen receptor is a transcription factor that plays a key role in the development of prostate cancer, and its interactions with general transcription regulators are therefore of potential therapeutic interest. The mechanistic basis of these interactions is poorly understood due to the intrinsically disordered nature of the transactivation domain of the androgen receptor and the generally transient nature of the protein-protein interactions that trigger transcription. Here, we identify a motif of the transactivation domain that contributes to transcriptional activity by recruiting the C-terminal domain of subunit 1 of the general transcription regulator TFIIF. These findings provide molecular insights into the regulation of androgen receptor function and suggest strategies for treating castration-resistant prostate cancer.


Asunto(s)
ADN/química , Proteínas Intrínsecamente Desordenadas/química , Receptores Androgénicos/química , Factores de Transcripción TFII/química , Secuencias de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Modelos Moleculares , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Activación Transcripcional
12.
Nature ; 551(7679): 204-209, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29088706

RESUMEN

For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.


Asunto(s)
Microscopía por Crioelectrón , Complejo Mediador/química , Complejo Mediador/ultraestructura , Saccharomyces cerevisiae , Factores de Transcripción TFII/química , Factores de Transcripción TFII/ultraestructura , Iniciación de la Transcripción Genética , ADN/química , ADN/genética , ADN/metabolismo , Complejo Mediador/metabolismo , Modelos Moleculares , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción TFII/metabolismo
13.
Nature ; 545(7653): 248-251, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467824

RESUMEN

Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.


Asunto(s)
Microscopía por Crioelectrón , Complejo Mediador/química , ARN Polimerasa II/química , Schizosaccharomyces/química , Factores de Transcripción TFII/ultraestructura , Iniciación de la Transcripción Genética , Cristalografía por Rayos X , Complejo Mediador/genética , Complejo Mediador/metabolismo , Complejo Mediador/ultraestructura , Modelos Moleculares , Mutación , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
14.
Trends Mol Med ; 23(6): 501-511, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28461154

RESUMEN

The biochemical properties of the signal-induced multifunctional transcription factor II-I (TFII-I) indicate that it is involved in a variety of gene regulatory processes. Although gene ablation in murine models and cell-based assays show that it is encoded by an essential gene, GTF2I/Gtf2i, its physiologic role in human disorders was relatively unknown until recently. Novel studies show that it is involved in an array of human diseases including neurocognitive disorders, systemic lupus erythematosus (SLE), and cancer. Here I bring together these diverse observations to illustrate its multiple pathophysiologic functions and further conjecture on how these could be related to its known biochemical properties. I expect that a better understanding of these 'structure-function' relationships would lead to future diagnostic and/or therapeutic potential.


Asunto(s)
Lupus Eritematoso Sistémico , Proteínas de Neoplasias , Neoplasias , Trastornos Neurocognitivos , Factores de Transcripción TFII , Animales , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Relación Estructura-Actividad , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
15.
J Mol Biol ; 428(21): 4258-4266, 2016 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-27639436

RESUMEN

In eukaryotes, RNA polymerase II requires general transcription factors to initiate mRNA transcription. TFIIE subunits α and ß form a heterodimer and recruit TFIIH to complete the assembly of the pre-initiation complex. Here, we have determined the crystal structure of human TFIIE at atomic resolution. The N-terminal half of TFIIEα forms an extended winged helix (WH) domain with an additional helix, followed by a zinc-finger domain. TFIIEß contains the WH2 domain, followed by two coiled-coil helices intertwining with TFIIEα. We also showed that TFIIEα binds to TFIIEß with nanomolar affinity using isothermal titration calorimetry. In addition, mutations on the residues involved in the interactions resulted in severe growth defects in yeast. Lack of the C-terminal region of yeast TFIIEß causes a mild growth defect in vivo. These findings provide a structural basis for understanding the functional mechanisms of TFIIE in the context of pre-initiation complex formation and transcription initiation.


Asunto(s)
Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Calorimetría , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Factores de Transcripción TFII/genética
16.
Biophys J ; 111(5): 950-62, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602723

RESUMEN

General transcription factor II E (TFIIE) contains an acid-rich region (residues 378-393) in its α-subunit, comprising 13 acidic and two hydrophobic (Phe387 and Val390) residues. Upon binding to the p62 subunit of TFIIH, the acidic region adopts an extended string-like structure on the basic groove of the pleckstrin homology domain (PHD) of p62, and inserts Phe387 and Val390 into two shallow pockets in the groove. Here, we have examined the dynamics of this interaction by NMR and molecular dynamics (MD) simulations. Although alanine substitution of Phe387 and/or Val390 greatly reduced binding to PHD, the binding mode of the mutants was similar to that of the wild-type, as judged by the chemical-shift changes of the PHD. NMR relaxation dispersion profiles of the interaction exhibited large amplitudes for residues in the C-terminal half-string in the acidic region (Phe387, Glu388, Val390, Ala391, and Asp392), indicating a two-site binding mode: one corresponding to the final complex structure, and one to an off-pathway minor complex. To probe the off-pathway complex structure, an atomically detailed free-energy landscape of the binding mode was computed by all-atom multicanonical MD. The most thermodynamically stable cluster corresponded to the final complex structure. One of the next stable clusters was the off-pathway structure cluster, showing the reversed orientation of the C-terminal half-string on the PHD groove, as compared with the final structure. MD calculations elucidated that the C-terminal half-acidic-string forms encounter complexes mainly around the positive groove region with nearly two different orientations of the string, parallel and antiparallel to the final structure. Interestingly, the most encountered complexes exhibit a parallel-like orientation, suggesting that the string has a tendency to bind around the groove in the proper orientation with the aid of Phe387 and/or Val390 to proceed smoothly to the final complex structure.


Asunto(s)
Factor de Transcripción TFIIH/química , Factores de Transcripción TFII/química , Algoritmos , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
17.
Transcription ; 7(4): 133-40, 2016 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-27223670

RESUMEN

Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing.


Asunto(s)
Complejos Multiproteicos/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción TFII/metabolismo , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Biológicos , Modelos Moleculares , Familia de Multigenes , Filogenia , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Elongación Transcripcional/química
18.
Nature ; 533(7603): 353-8, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193681

RESUMEN

Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.


Asunto(s)
ADN/metabolismo , ADN/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Sitio Alostérico , Secuencia de Bases , Microscopía por Crioelectrón , ADN/química , Modelos Biológicos , Datos de Secuencia Molecular , Movimiento , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/ultraestructura , Moldes Genéticos , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFII/ultraestructura
19.
Nature ; 533(7603): 359-65, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193682

RESUMEN

In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB.


Asunto(s)
ADN/metabolismo , ADN/ultraestructura , Movimiento , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFII/ultraestructura
20.
Proc Natl Acad Sci U S A ; 112(44): 13543-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483468

RESUMEN

The structure of a 33-protein, 1.5-MDa RNA polymerase II preinitiation complex (PIC) was determined by cryo-EM and image processing at a resolution of 6-11 Å. Atomic structures of over 50% of the mass were fitted into the electron density map in a manner consistent with protein-protein cross-links previously identified by mass spectrometry. The resulting model of the PIC confirmed the main conclusions from previous cryo-EM at lower resolution, including the association of promoter DNA only with general transcription factors and not with the polymerase. Electron density due to DNA was identifiable by the grooves of the double helix and exhibited sharp bends at points downstream of the TATA box, with an important consequence: The DNA at the downstream end coincides with the DNA in a transcribing polymerase. The structure of the PIC is therefore conducive to promoter melting, start-site scanning, and the initiation of transcription.


Asunto(s)
ADN/química , Complejos Multiproteicos/química , ARN Polimerasa II/química , Factores de Transcripción/química , Transcripción Genética , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , TATA Box/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFII/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA