Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.110
Filtrar
1.
Virulence ; 15(1): 2345019, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38656137

RESUMEN

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Asunto(s)
Vacunas Bacterianas , Interleucina-17 , Infecciones por Klebsiella , Klebsiella pneumoniae , Vacunas de ADN , Animales , Femenino , Humanos , Ratones , Inmunidad Adaptativa , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Modelos Animales de Enfermedad , Células HEK293 , Inmunidad Celular , Inmunización , Interleucina-17/inmunología , Interleucina-17/genética , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/genética , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas de ADN/genética , Vacunas de ADN/administración & dosificación , Factores de Virulencia/inmunología , Factores de Virulencia/genética
2.
Biomolecules ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672487

RESUMEN

Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Factores de Virulencia , Mycobacterium tuberculosis/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Factores de Virulencia/inmunología , Factores de Virulencia/química , Humanos , Vacunas contra la Tuberculosis/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Tuberculosis/inmunología , Tuberculosis/prevención & control , Tuberculosis/microbiología , Animales , Chaperonas Moleculares/inmunología , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo
3.
Mem Inst Oswaldo Cruz ; 119: e230040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655925

RESUMEN

BACKGROUND: The availability of genes and protein sequences for parasites has provided valuable information for drug target identification and vaccine development. One such parasite is Bartonella quintana, a Gram-negative, intracellular pathogen that causes bartonellosis in mammalian hosts. OBJECTIVE: Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to B. quintana. METHODS AND FINDINGS: To explore these aspects, we have adopted a subtractive proteomics approach to analyse the proteome of B. quintana. By subtractive proteins between the host and parasite proteome, a set of proteins that are likely unique to the parasite but absent in the host were identified. This analysis revealed that out of the 1197 protein sequences of the parasite, 660 proteins are non-homologous to the human host. Further analysis using the Database of Essential Genes predicted 159 essential proteins, with 28 of these being unique to the pathogen and predicted as potential putative targets. Subcellular localisation of the predicted targets revealed 13 cytoplasmic, eight membranes, one periplasmic, and multiple location proteins. The three-dimensional structure and B cell epitopes of the six membrane antigenic protein were predicted. Four B cell epitopes in KdtA and mraY proteins, three in lpxB and BQ09550, whereas the ftsl and yidC proteins were located with eleven and six B cell epitopes, respectively. MAINS CONCLUSIONS: This insight prioritises such proteins as novel putative targets for further investigations on their potential as drug and vaccine candidates.


Asunto(s)
Vacunas Bacterianas , Bartonella quintana , Proteómica , Bartonella quintana/inmunología , Bartonella quintana/genética , Vacunas Bacterianas/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Humanos , Simulación por Computador , Factores de Virulencia/inmunología , Factores de Virulencia/genética , Proteoma
4.
Infect Immun ; 92(5): e0044023, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38591882

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Escherichia coli Patógena Extraintestinal , Proteínas Hemolisinas , Animales , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Ratones , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Femenino , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Sistemas de Secreción Tipo V/inmunología , Sistemas de Secreción Tipo V/genética , Modelos Animales de Enfermedad , Humanos
5.
Nat Commun ; 14(1): 2898, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217469

RESUMEN

The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.


Asunto(s)
Células Dendríticas , Nucleotidiltransferasas , Virus Vaccinia , Proteínas Virales , Ratones Endogámicos C57BL , Animales , Ratones , Ratones Noqueados , Femenino , Nucleotidiltransferasas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Virus Vaccinia/patogenicidad , Factores de Virulencia/inmunología , Ubiquitinación , Proteínas Virales/genética , Proteínas Virales/inmunología , Complejo de la Endopetidasa Proteasomal , Interferón Tipo I/inmunología , Células HEK293 , Humanos , Proteínas de la Membrana/inmunología , Linfocitos T/inmunología
6.
J Virol ; 97(2): e0122722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656014

RESUMEN

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/patogenicidad , Eliminación de Gen , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Sus scrofa , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/inmunología
7.
Front Cell Infect Microbiol ; 12: 941939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967844

RESUMEN

Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.


Asunto(s)
Toxinas Bacterianas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Linfocitos T , Apoptosis , Toxinas Bacterianas/inmunología , Linfocitos T CD8-positivos/inmunología , Puntos de Control del Ciclo Celular/inmunología , División Celular , Proliferación Celular/fisiología , Citocinas/biosíntesis , Citocinas/inmunología , Escherichia coli Enteropatógena/inmunología , Escherichia coli Enteropatógena/patogenicidad , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Humanos , Interleucina-2 , Interleucina-4 , Leucocitos Mononucleares/inmunología , Necrosis , Linfocitos T/inmunología , Factores de Virulencia/inmunología
8.
Nature ; 608(7921): 161-167, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896747

RESUMEN

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidad , Inflamación , Receptor Toll-Like 4 , Factores de Virulencia , Animales , Criptococosis/inmunología , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/patogenicidad , Citocinas/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Lipopolisacáridos/inmunología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Virulencia , Factores de Virulencia/inmunología
9.
Arterioscler Thromb Vasc Biol ; 42(3): 261-276, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35109674

RESUMEN

Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.


Asunto(s)
Trampas Extracelulares/inmunología , Trampas Extracelulares/microbiología , Staphylococcus aureus/patogenicidad , Tromboinflamación/etiología , Animales , Factores de Coagulación Sanguínea/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Evasión Inmune , Ratones , Modelos Cardiovasculares , Modelos Inmunológicos , Neutrófilos/inmunología , Neutrófilos/microbiología , Activación Plaquetaria , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/inmunología , Tromboinflamación/inmunología , Tromboinflamación/microbiología , Factores de Virulencia/inmunología , Factor de von Willebrand/inmunología
10.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165181

RESUMEN

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Asunto(s)
Interferón gamma/inmunología , Infecciones Estafilocócicas/inmunología , Superantígenos/inmunología , Animales , Bacteriemia , Enterotoxinas/inmunología , Exotoxinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología , Staphylococcus aureus/patogenicidad , Linfocitos T/inmunología , Factores de Virulencia/inmunología
11.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055041

RESUMEN

Preterm infants are at increased risk for invasive neonatal bacterial infections. S. epidermidis, a ubiquitous skin commensal, is a major cause of late-onset neonatal sepsis, particularly in high-resource settings. The vulnerability of preterm infants to serious bacterial infections is commonly attributed to their distinct and developing immune system. While developmentally immature immune defences play a large role in facilitating bacterial invasion, this fails to explain why only a subset of infants develop infections with low-virulence organisms when exposed to similar risk factors in the neonatal ICU. Experimental research has explored potential virulence mechanisms contributing to the pathogenic shift of commensal S. epidermidis strains. Furthermore, comparative genomics studies have yielded insights into the emergence and spread of nosocomial S. epidermidis strains, and their genetic and functional characteristics implicated in invasive disease in neonates. These studies have highlighted the multifactorial nature of S. epidermidis traits relating to pathogenicity and commensalism. In this review, we discuss the known host and pathogen drivers of S. epidermidis virulence in neonatal sepsis and provide future perspectives to close the gap in our understanding of S. epidermidis as a cause of neonatal morbidity and mortality.


Asunto(s)
Interacciones Huésped-Patógeno , Sepsis Neonatal/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/fisiología , Factores de Edad , Toxinas Bacterianas/genética , Biopelículas , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Recién Nacido , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/prevención & control , Sepsis Neonatal/terapia , Factores de Riesgo , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/terapia , Virulencia/genética , Virulencia/inmunología , Factores de Virulencia/genética , Factores de Virulencia/inmunología
12.
Cell Host Microbe ; 30(1): 8-9, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35026136

RESUMEN

Effector-triggered immunity involves "guarded" host processes that, when perturbed by pathogen factors, prompt a secondary response. A recent study published in Nature by Gaidt et al. demonstrates that MORC3 serves as both the guard and the guarded antiviral host factor-creating a "heads, I win; tails, you lose!" scenario.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/genética , Antivirales , Proteínas de Unión al ADN/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Ubiquitina-Proteína Ligasas , Factores de Virulencia/inmunología
13.
FASEB J ; 36(2): e22171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35084749

RESUMEN

Toxoplasma gondii is an opportunistic protozoan, which widely infects humans and other warm-blooded animals. The type I interferon (IFN) such as IFN-α/ß is involved in cGAS-STING signaling to resist T. gondii infection. We found in RAW264.7 cells, that T. gondii virulence factor TgROP18I , inhibited IFN-ß production through interacting with interferon regulatory factor 3 (IRF3). Besides, TgROP18I interacted with p62 and Tumor Necrotic Factor Receptor Associated Factor 6 (TRAF6), which resulted in the inhibition of TRAF6-p62 interaction, and phosphorylation of p62. Furthermore, TgROP18I restricted the recruitment of ubiquitin, p62 and microtubule-associated protein light chain 3 (LC3) to the parasitophorous vacuole membrane (PVM) in IFN-γ-stimulated murine cell line L929 cells. In IFN-γ-stimulated human cells, TgROP18I restricted the decoration of PVM with ubiquitin, p62, and LC3, and bound with TRAF2, TRAF6, and p62, respectively. As a result, TgROP18I led to a successful parasitic replication in murine and human cells. Collectively, our study revealed the function of TgROP18I in suppressing host type I interferon responses in T. gondii infection for parasitic immune escape.


Asunto(s)
Inmunidad Innata/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Transducción de Señal/inmunología , Toxoplasma/inmunología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Interferón gamma/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Fosforilación/inmunología , Células RAW 264.7 , Factores de Virulencia/inmunología
14.
PLoS Pathog ; 18(1): e1010270, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089988

RESUMEN

ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-ß, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Inmunidad Innata/inmunología , Factores de Virulencia/inmunología , Virulencia/inmunología , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Animales , ARN Polimerasa III/inmunología , Receptores de Superficie Celular/inmunología , Porcinos
15.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35055134

RESUMEN

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


Asunto(s)
Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/uso terapéutico , Staphylococcus aureus/inmunología , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/inmunología , Vacunas Estafilocócicas/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Desarrollo de Vacunas , Factores de Virulencia/genética , Factores de Virulencia/inmunología
16.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930823

RESUMEN

Coxiella burnetii is a bacterial pathogen that replicates within host cells by establishing a membrane-bound niche called the Coxiella-containing vacuole. Biogenesis of this compartment requires effectors of its Dot/Icm type IV secretion system. A large cohort of such effectors has been identified, but the function of most of them remain elusive. Here, by a cell-based functional screening, we identified the effector Cbu0513 (designated as CinF) as an inhibitor of NF-κB signaling. CinF is highly similar to a fructose-1,6-bisphosphate (FBP) aldolase/phosphatase present in diverse bacteria. Further study reveals that unlike its ortholog from Sulfolobus tokodaii, CinF does not exhibit FBP phosphatase activity. Instead, it functions as a protein phosphatase that specifically dephosphorylates and stabilizes IκBα. The IκBα phosphatase activity is essential for the role of CinF in C. burnetii virulence. Our results establish that C. burnetii utilizes a protein adapted from sugar metabolism to subvert host immunity.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Fosfoproteínas Fosfatasas , Fiebre Q , Transducción de Señal , Factores de Virulencia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/inmunología , Coxiella burnetii/patogenicidad , Células HEK293 , Células HeLa , Humanos , FN-kappa B/genética , FN-kappa B/inmunología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/inmunología , Fiebre Q/genética , Fiebre Q/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Células Vero , Factores de Virulencia/genética , Factores de Virulencia/inmunología
17.
Immunol Lett ; 241: 49-54, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942191

RESUMEN

Prohibitin is a highly conserved ubiquitously expressed protein involved in several key cellular functions. Targeting of this protein in the membrane by the virulence polysaccharide, Vi, of human typhoid-causing pathogen, Salmonella enterica serovar Typhi (S. Typhi), results in suppression of IL-2 secretion from T cells activated through the T-cell receptor (TCR). However, the mechanism of this suppression remains unclear. Here, using Vi as a probe, we show that membrane prohibitin associates with the src-tyrosine kinase, p56lck (Lck), and actin in human model T cell line, Jurkat. Activation with anti-CD3 antibody brings about dissociation of this complex, which coincides with downstream ERK activation. The trimolecular complex reappears towards culmination of proximal TCR signaling. Engagement of cells with Vi prevents TCR-triggered activation of Lck and ERK by inhibiting dissociation of the former from prohibitin. These findings suggest a regulatory role for membrane prohibitin in Lck activation and TCR signaling.


Asunto(s)
Membrana Celular/metabolismo , Complejos Multiproteicos/metabolismo , Prohibitinas/metabolismo , Salmonella typhi/patogenicidad , Linfocitos T/fisiología , Actinas/metabolismo , Humanos , Terapia de Inmunosupresión , Células Jurkat , Activación de Linfocitos , Polisacáridos Bacterianos/inmunología , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Factores de Virulencia/inmunología
18.
BMC Plant Biol ; 21(1): 582, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886813

RESUMEN

BACKGROUND: The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS: Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION: The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Phytophthora infestans/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Solanum tuberosum/inmunología , Factores de Virulencia/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Transcriptoma
19.
Front Immunol ; 12: 749432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819932

RESUMEN

Staphylococcus aureus is a common human commensal and the leading cause of diverse infections. To identify distinctive parameters associated with infection and colonization, we compared the immune and inflammatory responses of patients with a diagnosis of invasive S. aureus disease to healthy donors. We analyzed the inflammatory responses founding a pattern of distinctive cytokines significantly higher in the patients with invasive disease. The measure of antibody levels revealed a wide antibody responsiveness from all subjects to most of the antigens, with significantly higher response for some antigens in the invasive patients compared to control. Moreover, functional antibodies against toxins distinctively associated with the invasive disease. Finally, we examined the genomic variability of isolates, showing no major differences in genetic distribution compared to a panel of representative strains. Overall, our study shows specific signatures of cytokines and functional antibodies in patients with different primary invasive diseases caused by S. aureus. These data provide insight into human responses towards invasive staphylococcal infections and are important for guiding the identification of novel preventive and therapeutic interventions against S. aureus.


Asunto(s)
Infecciones Estafilocócicas/inmunología , Adulto , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Niño , Citocinas/sangre , Humanos , Inmunoglobulina G/sangre , Análisis por Matrices de Proteínas , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/genética , Staphylococcus aureus/inmunología , Factores de Virulencia/inmunología
20.
Front Immunol ; 12: 752168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819933

RESUMEN

Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.


Asunto(s)
Antígenos Bacterianos/inmunología , Membrana Externa Bacteriana , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Staphylococcus aureus/inmunología , Vacunas Combinadas/administración & dosificación , Factores de Virulencia/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Femenino , Células HL-60 , Humanos , Ratones , Infecciones Estafilocócicas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...