Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.604
Filtrar
1.
Front Immunol ; 15: 1372904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742116

RESUMEN

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Asunto(s)
Fagocitos , Fagocitosis , Proteínas Recombinantes , Animales , Fagocitosis/inmunología , Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Unión Proteica , Strongylocentrotus purpuratus/inmunología , Strongylocentrotus purpuratus/genética , Inmunidad Innata , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Erizos de Mar/inmunología , Vibrio/inmunología , Proteínas Opsoninas/metabolismo , Proteínas Opsoninas/inmunología
2.
Front Immunol ; 15: 1401294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720899

RESUMEN

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Asunto(s)
Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fagocitosis , Fagocitos/inmunología , Fagocitos/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Unión Proteica
3.
mBio ; 15(5): e0342923, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624208

RESUMEN

The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE: Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.


Asunto(s)
Vía de Señalización Hippo , Inmunidad Innata , Macrófagos , Proteínas Serina-Treonina Quinasas , Serina-Treonina Quinasa 3 , Transducción de Señal , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitos/metabolismo , Ratones Noqueados , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/genética , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/inmunología
4.
J Neuroinflammation ; 21(1): 92, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610019

RESUMEN

Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.


Asunto(s)
Neuroglía , Enfermedades Neuroinflamatorias , Humanos , Animales , Ratones , Fagocitos , Astrocitos , Modelos Animales de Enfermedad , Dopamina , Antiinflamatorios
5.
Sci Signal ; 17(834): eadq0353, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687824

RESUMEN

Displacement of the glycocalyx by membrane blebbing enables macrophages to recognize apoptotic cells.


Asunto(s)
Apoptosis , Glicocálix , Macrófagos , Humanos , Glicocálix/metabolismo , Animales , Macrófagos/metabolismo , Macrófagos/citología , Fagocitos/metabolismo , Fagocitos/citología , Fagocitosis , Ratones
6.
mBio ; 15(5): e0063224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534159

RESUMEN

Bordetella species that cause respiratory infections in mammals include B. pertussis, which causes human whooping cough, and B. bronchiseptica, which infects nearly all mammals. Both bacterial species produce filamentous hemagglutinin (FhaB) and adenylate cyclase toxin (ACT), prominent surface-associated and secreted virulence factors that contribute to persistence in the lower respiratory tract by inhibiting clearance by phagocytic cells. FhaB and ACT proteins interact with themselves, each other, and host cells. Using immunoblot analyses, we showed that ACT binds to FhaB on the bacterial surface before it can be detected in culture supernatants. We determined that SphB1, a surface protease identified based on its requirement for FhaB cleavage, is also required for ACT cleavage, and we determined that the presence of ACT blocks SphB1-dependent and -independent cleavage of FhaB, but the presence of FhaB does not affect SphB1-dependent cleavage of ACT. The primary SphB1-dependent cleavage site on ACT is proximal to ACT's active site, in a region that is critical for ACT activity. We also determined that FhaB-bound ACT on the bacterial surface can intoxicate host cells producing CR3, the receptor for ACT. In addition to increasing our understanding of FhaB, ACT, and FhaB-ACT interactions on the Bordetella surface, our data are consistent with a model in which FhaB functions as a novel toxin delivery system by binding to ACT and allowing its release upon binding of ACT to its receptor, CR3, on phagocytic cells.IMPORTANCEBacteria need to control the variety, abundance, and conformation of proteins on their surface to survive. Members of the Gram-negative bacterial genus Bordetella include B. pertussis, which causes whooping cough in humans, and B. bronchiseptica, which causes respiratory infections in a broad range of mammals. These species produce two prominent virulence factors, the two-partner secretion (TPS) effector FhaB and adenylate cyclase toxin (ACT), that interact with themselves, each other, and host cells. Here, we determined that ACT binds FhaB on the bacterial surface before being detected in culture supernatants and that ACT bound to FhaB can be delivered to eukaryotic cells. Our data are consistent with a model in which FhaB delivers ACT specifically to phagocytic cells. This is the first report of a TPS system facilitating the delivery of a separate polypeptide toxin to target cells and expands our understanding of how TPS systems contribute to bacterial pathogenesis.


Asunto(s)
Toxina de Adenilato Ciclasa , Fagocitos , Factores de Virulencia de Bordetella , Toxina de Adenilato Ciclasa/metabolismo , Toxina de Adenilato Ciclasa/genética , Fagocitos/metabolismo , Fagocitos/microbiología , Factores de Virulencia de Bordetella/metabolismo , Factores de Virulencia de Bordetella/genética , Humanos , Bordetella pertussis/metabolismo , Bordetella pertussis/genética , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/genética , Unión Proteica , Animales
7.
Cells ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534379

RESUMEN

Disulfiram (DSF), an anti-alcoholism medicine, exerts treatment effects in patients suffering from persistent Borreliosis and also exhibits anti-cancer effects through its copper chelating derivatives and induction of oxidative stress in mitochondria. Since chronic/persistent borreliosis is characterized by increased amounts of pro-inflammatory macrophages, this study investigated opsonin-independent phagocytosis, migration, and surface marker expression of in vivo activated and in vitro cultured human monocyte-derived phagocytes (macrophages and dendritic cells) with and without DSF treatment. Phagocytosis of non-opsonized Dynabeads® M-450 and migration of macrophages and dendritic cells were monitored using live cell analyzer Juli™ Br for 24 h, imaging every 3.5 min. To simultaneously monitor phagocyte function, results were analyzed by a newly developed software based on the differential phase contrast images of cells before and after ingestion of Dynabeads. DSF decreased the phagocytic capacities exhibited by in vitro enriched and long-lived phagocytes. Although no chemotactic gradient was applied to the test system, vigorous spontaneous migration was observed. We therefore set up an algorithm to monitor and quantify both phagocytosis and migration simultaneously. DSF not only reduced phagocytosis in a majority of these long-lived phagocytes but also impaired their migration. Despite these selective effects by DSF, we found that DSF reduced the expression densities of surface antigens CD45 and CD14 in all of our long-lived phagocytes. In cells with a high metabolic activity and high mitochondrial contents, DSF led to cell death corresponding to mitochondrial oxidative stress, whereas metabolically inactive phagocytes survived our DSF treatment protocol. In conclusion, DSF affects the viability of metabolically active phagocytes by inducing mitochondrial stress and secondly attenuates phagocytosis and migration in some long-lived phagocytes.


Asunto(s)
Disulfiram , Proteínas Opsoninas , Humanos , Disulfiram/farmacología , Fagocitosis , Fagocitos , Macrófagos
8.
Immunol Rev ; 322(1): 71-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429865

RESUMEN

Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.


Asunto(s)
Enfermedad Granulomatosa Crónica , Neutrófilos , Humanos , Enfermedad Granulomatosa Crónica/metabolismo , Fagocitosis , Fagocitos/fisiología , Inflamación/metabolismo
9.
J Autoimmun ; 145: 103197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447248

RESUMEN

BACKGROUND AND OBJECTIVE: Understanding the regulation of efferocytosis by myeloid phagocytes is important in identifying novel targets in systemic lupus erythematosus (SLE). Cadherin-11 (CDH11), a cell adhesion molecule, is implicated in inflammatory arthritis and fibrosis and recently been shown to regulate macrophage phagocytosis. The extent and mechanism of this regulation is unknown. Our objective was to examine the extent to which CDH11 regulates myeloid phagocytes and contributes to autoimmunity and tissue inflammation. METHODS: We analyzed efferocytosis in macrophages and dendritic cells (DCs) from WT and Cdh11-/- mice and investigated the mechanisms in vitro. We investigated the role of CDH11 in disease development in vivo using the pristane induced lupus model. To translate the clinical relevance of CDH11 in human disease, we measured serum CDH11 levels in two independent pediatric SLE (pSLE) cohorts and healthy controls. RESULTS: Using bone marrow derived macrophages (BMDMs) and DCs (BMDCs), we found impaired efferocytosis in phagocytes from Cdh11-/- mice, mediated by downregulated efferocytosis receptor expression and RhoGTPase activation. Specifically, loss of CDH11 downregulated Mertk expression and Rac1 activation in BMDMs, and integrin αVß3 expression and Cdc42 activation in BMDCs, highlighting distinct pathways. In vivo, Cdh11-/- mice displayed defective efferocytosis and increased accumulation of apoptotic debris in pristane-induced lupus. Further, Cdh11-/- mice had enhanced systemic inflammation and autoimmune inflammation with increased anti-dsDNA autoantibodies, splenomegaly, type I interferons, and inflammatory cytokines. Paradoxically, at the tissue level, Cdh11-/- mice were protected against glomerulonephritis, indicating a dual role in murine lupus. Finally, SLE patients had increased serum CDH11 compared to controls. CONCLUSION: This study highlights a novel role of CDH11 in regulating myeloid cells and efferocytosis and its potential as a contributor to development in autoimmunity murine lupus. Despite the increase in autoimmunity, Cdh11-/- mice developed decreased tissue inflammation and damage.


Asunto(s)
Cadherinas , Células Dendríticas , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico , Macrófagos , Ratones Noqueados , Fagocitosis , Animales , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/genética , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Fagocitosis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inflamación/inmunología , Autoinmunidad , Femenino , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Fagocitos/inmunología , Fagocitos/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Niño , Terpenos
10.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307020

RESUMEN

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Asunto(s)
Metionina/análogos & derivados , NADPH Oxidasas , Fagocitos , Animales , Ratones , Humanos , Anaerobiosis , Fagocitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiración
11.
Nature ; 627(8002): 189-195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355798

RESUMEN

Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.


Asunto(s)
NADPH Oxidasa 2 , Fagocitos , Humanos , Electrones , Activación Enzimática , Flavina-Adenina Dinucleótido/metabolismo , Hemo/química , Hemo/metabolismo , NADP/metabolismo , NADPH Oxidasa 2/química , NADPH Oxidasa 2/metabolismo , Fagocitos/enzimología , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Superóxidos/metabolismo , Unión Proteica
12.
PLoS Genet ; 20(2): e1011176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408082

RESUMEN

Colorectal cancer (CRC) is a major cause of cancer mortality and a serious health problem worldwide. Mononuclear phagocytes are the main immune cells in the tumor microenvironment of CRC with remarkable plasticity, and current studies show that macrophages are closely related to tumor progression, invasion and dissemination. To understand the immunological function of mononuclear phagocytes comprehensively and deeply, we use single-cell RNA sequencing and classify mononuclear phagocytes in CRC into 6 different subsets, and characterize the heterogeneity of each subset. We find that tissue inhibitor of metalloproteinases (TIMPs) involved in the differentiation of proinflammatory and anti-inflammatory mononuclear phagocytes. Trajectory of circulating monocytes differentiation into tumor-associated macrophages (TAMs) and the dynamic changes at levels of transcription factor (TF) regulons during differentiation were revealed. We also find that C5 subset, characterized by activation of lipid metabolism, is in the terminal state of differentiation, and that the abundance of C5 subset is negatively correlated with CRC patients' prognosis. Our findings advance the understanding of circulating monocytes' differentiation into macrophages, identify a new subset associated with CRC prognosis, and reveal a set of TF regulons regulating mononuclear phagocytes differentiation, which are expected to be potential therapeutic targets for reversing immunosuppressive tumor microenvironment.


Asunto(s)
Neoplasias Colorrectales , Monocitos , Humanos , ARN/metabolismo , Macrófagos/metabolismo , Diferenciación Celular/genética , Neoplasias Colorrectales/patología , Fagocitos/metabolismo , Microambiente Tumoral/genética
13.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359833

RESUMEN

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Asunto(s)
Actinas , Glicocálix , Animales , Humanos , Ratones , Glicocálix/metabolismo , Actinas/metabolismo , Fagocitos , Fagocitosis/fisiología , Ligandos , Apoptosis/fisiología , Fosfatidilserinas/metabolismo
14.
Virulence ; 15(1): 2313413, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38357909

RESUMEN

Over the last 20 years, the larva of the greater waxmoth, Galleria mellonella, has rapidly increased in popularity as an in vivo mammalian replacement model organism for the study of human pathogens. Experimental readouts of response to infection are most often limited to observing the melanization cascade and quantifying larval death and, whilst transcriptomic and proteomic approaches, and methods to determine microbial load are also used, a more comprehensive toolkit of profiling infection over time could transform the applicability of this model. As an invertebrate, Galleria harbour an innate immune system comprised of both humoral components and a repertoire of innate immune cells - termed haemocytes. Although information on subtypes of haemocytes exists, there are conflicting reports on their exact number and function. Flow cytometry has previously been used to assay Galleria haemocytes, but protocols include both centrifugation and fixation - physical methods which have the potential to affect haemocyte morphology prior to analysis. Here, we present a method for live haemocyte analysis by flow cytometry, revealing that Galleria haemocytes constitute only a single resolvable population, based on relative size or internal complexity. Using fluorescent zymosan particles, we extend our method to show that up to 80% of the Galleria haemocyte population display phagocytic capability. Finally, we demonstrate that the developed assay reliably replicates in vitro data, showing that cell wall ß-1,3-glucan masking by Candida albicans subverts phagocytic responses. As such, our method provides a new tool with which to rapidly assess phagocytosis and understand live infection dynamics in Galleria.


Asunto(s)
Mariposas Nocturnas , Proteómica , Animales , Humanos , Larva , Fagocitosis , Fagocitos , Mamíferos
15.
J Cell Sci ; 137(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294065

RESUMEN

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Asunto(s)
Proteínas de la Membrana , Microglía , Animales , Microglía/metabolismo , Proteínas de la Membrana/metabolismo , Cloruros/metabolismo , Pez Cebra/metabolismo , Protones , Fagocitos/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo
16.
PLoS One ; 19(1): e0295547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206970

RESUMEN

Streptococcus uberis is frequently isolated from milk collected from dairy cows with mastitis. According to the host's immunity, bacterial virulence, and their interaction, infection with some strains can induce persistent subclinical inflammation, while infection with others induces severe inflammation and transient mastitis. This study compared the inflammatory response of milk-isolated white blood cells (mWBCs) to persistent and transient S. uberis strains. Quarter milk samples were collected aseptically for bacterial culture from all lactating cows once a week over a 10-week period. A transient and noncapsular strain with a 1-week intramammary infection duration was selected from this herd, while a persistent and capsular S. uberis strain with an intramammary infection longer than 2 months from our previous study was selected based on an identical pulse field gel electrophoresis pattern during the IMI episode. Cellular and molecular responses of mWBCs were tested, and the data were analyzed using repeated analysis of variance. The results showed a higher response in migration, reactive oxygen species generation, and bacterial killing when cells were stimulated with transient S. uberis. In contrast, the persistent strain led to increased neutrophil extracellular trap release. This study also highlighted several important molecular aspects of mWBCs. Gene expression analyses by real-time RT-PCR revealed a significant elevation in the expression of Toll-like receptors (TLR-1, TLR-2, TLR-6) and proinflammatory cytokines (tumor necrosis factor-alpha or TNF-α) with the transient strain. Additionally, Streptococcus uberis capsule formation might contribute to the capability of these strains to induce different immune responses. Altogether, these results focus on the immune function of activated mWBCs which demonstrate that a transient strain can elicit a stronger local immune response and, subsequently, lead to rapid recovery from mastitis.


Asunto(s)
Mastitis Bovina , Infecciones Estreptocócicas , Streptococcus , Animales , Femenino , Bovinos , Humanos , Leche/metabolismo , Infecciones Estreptocócicas/microbiología , Lactancia , Mastitis Bovina/microbiología , Fagocitos , Inflamación/metabolismo
17.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226975

RESUMEN

Aducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aß, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aß, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aß clearance. Reductions in Aß and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Microglía , Animales , Ratones , Inmunoterapia , Fagocitos , Placa Amiloide
18.
Sci Adv ; 10(1): eadh7957, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170768

RESUMEN

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.


Asunto(s)
Mycobacterium , Macrófagos/metabolismo , Fagocitos , Membrana Celular
19.
Proc Natl Acad Sci U S A ; 121(5): e2314627121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252818

RESUMEN

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.


Asunto(s)
Complemento C5a , Lectinas Tipo C , Macrófagos , Humanos , Complemento C5a/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Células Mieloides , Fagocitos , Transducción de Señal
20.
Br J Pharmacol ; 181(10): 1536-1549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36869866

RESUMEN

Human neutrophils are components of the innate immune system and are the most abundant white blood cells in the circulation. They are professional phagocytes and express several G protein-coupled receptors (GPCRs), which are essential for proper neutrophil functions. So far, the two formyl peptide receptors, FPR1 and FPR2, have been the most extensively studied group of neutrophil GPCRs, but recently, a new group, the free fatty acid (FFA) receptors, has attracted growing attention. Neutrophils express two FFA receptors, GPR84 and FFA2, which sense medium- and short-chain fatty acids respectively, and display similar activation profiles. The exact pathophysiological role of GPR84 is not yet fully understood, but it is generally regarded as a pro-inflammatory receptor that mediates neutrophil activation. In this review, we summarize current knowledge of how GPR84 affects human neutrophil functions and discuss the regulatory mechanisms that control these responses, focusing on the similarities and differences in comparison to the two FPRs and FFA2. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Asunto(s)
Neutrófilos , Transducción de Señal , Humanos , Receptores de Formil Péptido , Fagocitos , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...