Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.810
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673839

RESUMEN

Phagocytosis (and endocytosis) is an unusual cellular process that results in the formation of a novel subcellular organelle, the phagosome. This phagosome contains not only the internalised target of phagocytosis but also the external medium, creating a new border between extracellular and intracellular environments. The boundary at the plasma membrane is, of course, tightly controlled and exploited in ionic cell signalling events. Although there has been much work on the control of phagocytosis by ions, notably, Ca2+ ions influxing across the plasma membrane, increasing our understanding of the mechanism enormously, very little work has been done exploring the phagosome/cytosol boundary. In this paper, we explored the changes in the intra-phagosomal Ca2+ ion content that occur during phagocytosis and phagosome formation in human neutrophils. Measuring Ca2+ ion concentration in the phagosome is potentially prone to artefacts as the intra-phagosomal environment experiences changes in pH and oxidation. However, by excluding such artefacts, we conclude that there are open Ca2+ channels on the phagosome that allow Ca2+ ions to "drain" into the surrounding cytosol. This conclusion was confirmed by monitoring the translocation of the intracellularly expressed YFP-tagged C2 domain of PKC-γ. This approach marked regions of membrane at which Ca2+ influx occurred, the earliest being the phagocytic cup, and then the whole cell. This paper therefore presents data that have novel implications for understanding phagocytic Ca2+ signalling events, such as peri-phagosomal Ca2+ hotspots, and other phenomena.


Asunto(s)
Señalización del Calcio , Calcio , Neutrófilos , Fagocitosis , Fagosomas , Humanos , Calcio/metabolismo , Fagosomas/metabolismo , Neutrófilos/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo
2.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607919

RESUMEN

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Asunto(s)
Antígenos de Neoplasias , Carcinogénesis , Macrófagos Peritoneales , Animales , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Femenino , Ratones , Carcinogénesis/patología , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Reactividad Cruzada/inmunología , Línea Celular Tumoral , Fagosomas/metabolismo , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Actinas/metabolismo
3.
Nature ; 628(8007): 408-415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480883

RESUMEN

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Asunto(s)
Eferocitosis , Macrófagos , ARN Polimerasa II , Elongación de la Transcripción Genética , Animales , Humanos , Masculino , Ratones , Apoptosis , Citoesqueleto/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/deficiencia , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Eferocitosis/genética , Concentración de Iones de Hidrógeno , Macrófagos/inmunología , Macrófagos/metabolismo , Neuronas/metabolismo , Fagosomas/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Factores de Tiempo
4.
Sci Rep ; 14(1): 6297, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491095

RESUMEN

Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.


Asunto(s)
Proteínas Bacterianas , Infecciones por Pseudomonas , Humanos , Animales , Ratones , Proteínas Bacterianas/metabolismo , Pez Cebra/metabolismo , Infecciones por Pseudomonas/genética , Fagocitosis , Fagosomas/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
Nat Cell Biol ; 26(3): 366-377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316984

RESUMEN

Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Macroautofagia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Autofagia/fisiología , Fagosomas/metabolismo , Factores de Transcripción/metabolismo , Fosfatos/metabolismo
6.
Microbiol Res ; 282: 127664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422860

RESUMEN

Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 µM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.


Asunto(s)
Mycobacterium , Proteína p53 Supresora de Tumor , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Macrófagos , Fenol , Células THP-1 , Fagosomas/metabolismo , Fagosomas/microbiología , Lisosomas/metabolismo , Mycobacterium/metabolismo , Fenoles/farmacología , Fenoles/metabolismo
7.
J Immunol ; 212(7): 1063-1068, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353614

RESUMEN

Activation of naive CD8-positive T lymphocytes is mediated by dendritic cells that cross-present MHC class I (MHC-I)-associated peptides derived from exogenous Ags. The most accepted mechanism involves the translocation of Ags from phagosomes or endolysosomes into the cytosol, where antigenic peptides generated by cytosolic proteasomes are delivered by the transporter associated with Ag processing (TAP) to the endoplasmic reticulum, or an endocytic Ag-loading compartment, where binding to MHC-I occurs. We have described an alternative pathway where cross-presentation is independent of TAP but remains dependent on proteasomes. We provided evidence that active proteasomes found within the lumen of phagosomes and endolysosomal vesicles locally generate antigenic peptides that can be directly loaded onto trafficking MHC-I molecules. However, the mechanism of active proteasome delivery to the endocytic compartments remained unknown. In this study, we demonstrate that phagosome-associated LC3A/B structures deliver proteasomes into subcellular compartments containing exogenous Ags and that autophagy drives TAP-independent, proteasome-dependent cross-presentation.


Asunto(s)
Reactividad Cruzada , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Presentación de Antígeno , Autofagosomas , Fagosomas/metabolismo , Antígenos de Histocompatibilidad Clase I , Antígenos , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(8): e2309465121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38354262

RESUMEN

Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.


Asunto(s)
Fagosomas , Canales de Dos Poros , Ratones , Animales , Fagosomas/metabolismo , Lisosomas/metabolismo , Hidrolasas/metabolismo , Colesterol/metabolismo
9.
Emerg Microbes Infect ; 13(1): 2322663, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38380651

RESUMEN

The discovery of promising cytokines and clarification of their immunological mechanisms in controlling the intracellular fate of Mycobacterium tuberculosis (Mtb) are necessary to identify effective diagnostic biomarkers and therapeutic targets. To escape immune clearance, Mtb can manipulate and inhibit the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. In this study, we found that interleukin 16 (IL-16) is elevated in the serum samples of Tuberculosis (TB) patients and can serve as a specific target for treatment TB. There was a significant difference in IL-16 levels among active TB, latent TB infection (LTBI), and non-TB patients. This study first revealed that macrophages are the major source of IL-16 production in response to Mtb infection, and elucidated that IL-16 can promote Mtb intracellular survival by inhibiting phagosome maturation and suppressing the expression of Rev-erbα which can inhibit IL-10 secretion. The experiments using zebrafish larvae infected with M. marinum and mice challenged with H37Rv demonstrated that reducing IL-16 levels resulted in less severe pathology and improved survival, respectively. In conclusion, this study provided direct evidence that Mtb hijacks the host macrophages-derived interleukin 16 to enhance intracellular growth. It is suggesting the immunosuppressive role of IL-16 during Mtb infection, supporting IL-16 as a promising therapeutic target.


Asunto(s)
Interleucina-16 , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Ratones , Interleucina-16/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Fagosomas/metabolismo , Fagosomas/microbiología , Tuberculosis/microbiología , Pez Cebra
10.
Mol Biol Cell ; 35(3): ar44, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265888

RESUMEN

Phagosome formation and maturation reportedly occur via sequential membrane fusion events mediated by synaptosomal-associated protein of 23 kDa (SNAP23), a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. Vesicle-associated membrane protein 5 (VAMP5), also a plasmalemma SNARE, interacts with SNAP23; however, its precise function in phagocytosis in macrophages remains elusive. To elucidate this aspect, we investigated the characteristics of macrophages in the presence of VAMP5 overexpression or knockdown and found that VAMP5 participates in Fcγ receptor-mediated phagosome formation, although not directly in phagosome maturation. Overexpressed VAMP5 was localized to the early phagosomal membrane but no longer localized to the lysosomal-associated membrane protein 1-positive maturing phagosomal membrane. Analyses using compound-based selective inhibitors demonstrated that VAMP5 dissociation from early phagosomes occurs in a clathrin- and dynamin-dependent manner and is indispensable for SNAP23 function in subsequent membrane fusion during phagosome maturation. Accordingly, to the best of our knowledge, we demonstrate, for the first time, that VAMP5 exerts an immunologically critical function during phagosome formation and maturation via SNARE-based membrane trafficking in macrophages.


Asunto(s)
Fagocitosis , Receptores de IgG , Receptores de IgG/metabolismo , Macrófagos/metabolismo , Fagosomas/metabolismo , Proteínas SNARE/metabolismo
11.
Eur J Cell Biol ; 103(1): 151382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171214

RESUMEN

The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.


Asunto(s)
Glicoproteínas , Glicoproteínas de Membrana , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Fagosomas/metabolismo , Lisosomas/metabolismo
12.
Mol Microbiol ; 121(1): 69-84, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38017607

RESUMEN

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Asunto(s)
Dictyostelium , Humanos , Dictyostelium/metabolismo , Dictyostelium/microbiología , Pseudomonas aeruginosa/metabolismo , Fagosomas/metabolismo , Neutrófilos , Antibacterianos/metabolismo , Bacterias
13.
Mol Biol Cell ; 35(3): ar26, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117588

RESUMEN

Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.


Asunto(s)
Actinas , Proteínas del Citoesqueleto , Fagocitosis , Actinas/metabolismo , Proteínas Portadoras/metabolismo , Dineínas/metabolismo , Macrófagos/metabolismo , Fagocitosis/fisiología , Fagosomas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto/metabolismo
14.
Trends Microbiol ; 32(5): 465-476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38103995

RESUMEN

Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.


Asunto(s)
Dictyostelium , Metales , Fagocitosis , Metales/metabolismo , Dictyostelium/metabolismo , Dictyostelium/fisiología , Evolución Biológica , Acanthamoeba , Animales , Fagosomas/metabolismo , Zinc/metabolismo , Metaloides/metabolismo , Cobre/metabolismo , Disponibilidad Biológica , Mitocondrias/metabolismo
15.
Nat Commun ; 14(1): 7338, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957156

RESUMEN

Autophagosomes are double-membrane vesicles generated intracellularly to encapsulate substrates for lysosomal degradation during autophagy. Phase separated p62 body plays pivotal roles during autophagosome formation, however, the underlying mechanisms are still not fully understood. Here we describe a spatial membrane gathering mode by which p62 body functions in autophagosome formation. Mass spectrometry-based proteomics reveals significant enrichment of vesicle trafficking components within p62 body. Combining cellular experiments and biochemical reconstitution assays, we confirm the gathering of ATG9 and ATG16L1-positive vesicles around p62 body, especially in Atg2ab DKO cells with blocked lipid transfer and vesicle fusion. Interestingly, p62 body also regulates ATG9 and ATG16L vesicle trafficking flux intracellularly. We further determine the lipid contents associated with p62 body via lipidomic profiling. Moreover, with in vitro kinase assay, we uncover the functions of p62 body as a platform to assemble ULK1 complex and invigorate PI3KC3-C1 kinase cascade for PI3P generation. Collectively, our study raises a membrane-based working model for multifaceted p62 body in controlling autophagosome biogenesis, and highlights the interplay between membraneless condensates and membrane vesicles in regulating cellular functions.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Autofagia/fisiología , Macroautofagia , Fagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Lípidos
16.
Biochem Biophys Res Commun ; 689: 149236, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37979328

RESUMEN

Phagosomes are dynamic organelles formed by macrophages to capture and destroy microbial pathogens. Phagosome transport from the cell periphery to the perinuclear region, is essential for fusion with lysosomes and the elimination of pathogens. Molecular motors, kinesin and dynein, generate opposing forces, transporting the phagosome away from and towards the lysosome, respectively. Luminal acidification plays a crucial role in determining the net directional movement of the phagosome. The mechanics of this regulation are not known. In this study, we used the sodium proton exchanger NHE9 to selectively modulate phagosomal acidification in macrophages. We then investigated its impact on the mechanical properties of kinesin and dynein motors through optical trapping experiments. We observed a negative correlation between the tenacity of dynein motors and pH under high resistive forces. Reduced luminal acidification impaired generation of dynein cooperative forces, which are crucial for transporting the phagosome to the lysosome. Conversely, the kinesin-powered motility of phagosomes is enabled by a decrease in phagosomal acidification. Given the various methods pathogens employ to limit phagosomal acidification, our findings are highly significant in the context of host-pathogen interactions.


Asunto(s)
Dineínas , Cinesinas , Dineínas/metabolismo , Cinesinas/metabolismo , Fagosomas/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno
17.
J Phys Chem B ; 127(43): 9312-9322, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37871280

RESUMEN

Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.


Asunto(s)
Actinas , Macrófagos , Actinas/metabolismo , Macrófagos/metabolismo , Microtúbulos , Fagosomas/metabolismo , Citoesqueleto de Actina/metabolismo
18.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794132

RESUMEN

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Asunto(s)
Fagocitosis , Fagosomas , Fagosomas/metabolismo , Fagocitosis/fisiología , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
19.
Microbiol Res ; 277: 127503, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748260

RESUMEN

Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.


Asunto(s)
Lisosomas , Fagocitosis , Lisosomas/microbiología , Fagosomas/metabolismo , Fagosomas/microbiología , Endocitosis , Evasión Inmune
20.
Immunol Rev ; 319(1): 45-64, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37551912

RESUMEN

Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.


Asunto(s)
Fagocitosis , Fagosomas , Humanos , Fagosomas/metabolismo , Fagocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...