Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.099
Filtrar
1.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709196

RESUMEN

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Asunto(s)
Cambio Climático , Fagus , Estaciones del Año , Temperatura , Fagus/crecimiento & desarrollo , Fagus/fisiología , Europa (Continente) , Semillas/crecimiento & desarrollo , Semillas/fisiología , Reproducción , Árboles/crecimiento & desarrollo , Árboles/fisiología , Polinización
2.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714916

RESUMEN

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Asunto(s)
Fagus , Metionina , Proteínas de Plantas , Proteómica , Semillas , Fagus/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Semillas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinación , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Environ Monit Assess ; 196(6): 571, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777936

RESUMEN

This study was conducted to determine the changes in carbon stocks of oriental beech (Fagus orientalis) according to stand development stage in the Marmara Region of Türkiye. For this purpose, sample plots were taken from a total of 32 areas encompassing four stand development stages (young, middle age, mature and overmature stand). The diameter at breast height and height of all trees in the sample plots were measured, and only three dominant trees's ages per plot were determined. Aboveground carbon stock was calculated using equations developed for beech forests, while the coefficients in the Agriculture, Forestry and Other Land Use guide were used to determine belowground carbon stocks. A soil pit was dug in each plot and soil samples were taken at different depths (0-10, 10-30, 30-60, 60-100 cm). In addition, litters were sampled from four different 25 × 25 cm sections in each plot, and then the physical and chemical properties of the soil and litters were analysed. The variations in carbon stocks in above- and below-ground tree mass, litter and soil, and in ecosystem carbon stocks according to development stage were examined by analysis of variance and Duncan test, and the relationships between the carbon stocks were investigated by correlation analysis. Aboveground (AG) and belowground (BG) tree, soil and ecosystem carbon stocks showed significant differences between the four stand development stages (P < 0.05), but not the litter carbon stocks (P > 0.05). AG and BG tree and ecosystem carbon stocks increased with progressive stand development stages, while the soil carbon stock was the highest at the young stage. These findings will contribute to the preparation of forest management plans and the national greenhouse gas inventory.


Asunto(s)
Carbono , Monitoreo del Ambiente , Fagus , Bosques , Suelo , Fagus/crecimiento & desarrollo , Carbono/análisis , Suelo/química , Turquía , Árboles , Agricultura Forestal , Ecosistema
4.
Physiol Plant ; 176(3): e14334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705836

RESUMEN

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Asunto(s)
Fagus , Estudio de Asociación del Genoma Completo , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Fagus/genética , Fagus/fisiología , Polimorfismo de Nucleótido Simple/genética , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Desequilibrio de Ligamiento/genética , Ambiente , Fenotipo , Genotipo , Alemania
5.
Rapid Commun Mass Spectrom ; 38(14): e9716, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738638

RESUMEN

RATIONALE: This study overcomes traditional biomass analysis limitations by introducing a pioneering matrix-free laser desorption/ionization (LDI) approach in mass spectrometry imaging (MSI) for efficient lignin evaluation in wood. The innovative acetic acid-peracetic acid (APA) treatment significantly enhances lignin detection, enabling high-throughput, on-site analysis. METHODS: Wood slices, softwood from a conifer tree (Japanese cypress) and hardwood from a broadleaf tree (Japanese beech), were analyzed using MSI with a Fourier transform ion cyclotron resonance mass spectrometer. The developed APA treatment demonstrated effectiveness for MSI analysis of biomass. RESULTS: Our imaging technique successfully distinguishes between earlywood and latewood and enables the distinct visualization of lignin in these and other wood tissues, such as the radial parenchyma. This approach reveals significant contrasts in MSI. It has identified intense ions from ß-O-4-type lignin, specifically in the radial parenchyma of hardwood, highlighting the method's precision and utility in wood tissue analysis. CONCLUSIONS: The benefits of matrix-free LDI include reduced peak overlap, consistent sample quality, preservation of natural sample properties, enhanced analytical accuracy, and reduced operational costs. This innovative approach is poised to become a standard method for rapid and precise biomass evaluation and has important applications in environmental research and sustainable resource management and is crucial for the effective management of diverse biomass, paving the way towards a sustainable, circular society.


Asunto(s)
Biomasa , Lignina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Madera , Madera/química , Lignina/análisis , Lignina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fagus/química
6.
PLoS One ; 19(5): e0302528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753717

RESUMEN

The analysis of critical states during fracture of wood materials is crucial for wood building safety monitoring, wood processing, etc. In this paper, beech and camphor pine are selected as the research objects, and the acoustic emission signals during the fracture process of the specimens are analyzed by three-point bending load experiments. On the one hand, the critical state interval of a complex acoustic emission signal system is determined by selecting characteristic parameters in the natural time domain. On the other hand, an improved method of b_value analysis in the natural time domain is proposed based on the characteristics of the acoustic emission signal. The K-value, which represents the beginning of the critical state of a complex acoustic emission signal system, is further defined by the improved method of b_value in the natural time domain. For beech, the analysis of critical state time based on characteristic parameters can predict the "collapse" time 8.01 s in advance, while for camphor pines, 3.74 s in advance. K-value can be analyzed at least 3 s in advance of the system "crash" time for beech and 4 s in advance of the system "crash" time for camphor pine. The results show that compared with traditional time-domain acoustic emission signal analysis, natural time-domain acoustic emission signal analysis can discover more available feature information to characterize the state of the signal. Both the characteristic parameters and Natural_Time_b_value analysis in the natural time domain can effectively characterize the time when the complex acoustic emission signal system enters the critical state. Critical state analysis can provide new ideas for wood health monitoring and complex signal processing, etc.


Asunto(s)
Acústica , Madera , Madera/química , Fagus , Pinus
7.
Environ Monit Assess ; 196(5): 470, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658409

RESUMEN

Recent studies suggest that arthropod diversity in German forests is declining. Currently, different national programs are being developed to monitor arthropod trends and to unravel the effects of forest management on biodiversity in forests. To establish effective long-term monitoring programs, a set of drivers of arthropod diversity and composition as well as suitable species groups have to be identified. To aid in answering these questions, we investigated arthropod data collected in four Hessian forest reserves (FR) in the 1990s. To fully utilize this data set, we combined it with results from a retrospective structural sampling design applied at the original trap locations in central European beech (Fagus sylvatica) forests. As expected, the importance of the different forest structural, vegetation, and site attributes differed largely between the investigated arthropod groups: beetles, spiders, Aculeata, and true bugs. Measures related to light availability and temperature such as canopy cover or potential radiation were important to all groups affecting either richness, composition, or both. Spiders and true bugs were affected by the broadest range of explanatory variables, which makes them a good choice for monitoring general trends. For targeted monitoring focused on forestry-related effects on biodiversity, rove and ground beetles seem more suitable. Both groups were driven by a narrower, more management-related set of variables. Most importantly, our study approach shows that it is possible to utilize older biodiversity survey data. Although, in our case, there are strong restrictions due to the long time between species and structural attribute sampling.


Asunto(s)
Artrópodos , Biodiversidad , Monitoreo del Ambiente , Fagus , Bosques , Animales , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos
8.
Sci Total Environ ; 930: 172774, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685423

RESUMEN

Deadwood is an important element of forest ecosystems that affects many of its components, including the soil environment. Our research is an attempt to determine the role of decaying wood in shaping the properties of forest soils in mountain ecosystems. The aim of our research was to present the influence of beech deadwood on physicochemical properties and microbiological diversity of soils. The research was carried out in the Baba Góra Massif at its northern exposure. The research plots were established in the altitude gradient at 600, 800 and 1000 m above sea level. On each plot, samples were taken from decaying wood, from the soil directly under the decaying log, and a soil sample 1 m from the log as a control. We determined the basic properties of the samples, that is pH, C and N concentration and lignin content. The enzymatic activity and additionally, the taxonomic composition of soil bacterial and fungal communities was determined in the collected samples. Our research indicates the important role of decaying beech wood in shaping the properties of forest soils. We noted a positive effect of decaying wood on the properties of the tested soils. Soils affected by deadwood were characterized by significantly higher pH, C and N concentrations compared to control soils, regardless of their location in the altitude gradient. Additionally, we found that soils affected by decaying wood are characterized by a different composition of microorganisms regardless of their location in the altitude gradient. In control soil the fungal and bacterial alpha diversity were lowest compared with the deadwood and soil under the influence of deadwood. Our results may have practical applications in the management of forest ecosystems. The presented results indicate the possibility of leaving deadwood in order to improve its basic physicochemical properties and increase microbial diversity.


Asunto(s)
Fagus , Bosques , Microbiología del Suelo , Suelo , Madera , Suelo/química , Biodiversidad , Hongos , Bacterias/clasificación , Microbiota
9.
New Phytol ; 242(6): 2495-2509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641748

RESUMEN

Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.


Asunto(s)
Sequías , Fagus , Herbivoria , Fitoquímicos , Hojas de la Planta , Fagus/fisiología , Herbivoria/fisiología , Hojas de la Planta/fisiología , Animales , Metaboloma
10.
Proc Biol Sci ; 291(2020): 20232338, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593851

RESUMEN

Transcriptomics provides a versatile tool for ecological monitoring. Here, through genome-guided profiling of transcripts mapping to 33 042 gene models, expression differences can be discerned among multi-year and seasonal leaf samples collected from American beech trees at two latitudinally separated sites. Despite a bottleneck due to post-Columbian deforestation, the single nucleotide polymorphism-based population genetic background analysis has yielded sufficient variation to account for differences between populations and among individuals. Our expression analyses during spring-summer and summer-autumn transitions for two consecutive years involved 4197 differentially expressed protein coding genes. Using Populus orthologues we reconstructed a protein-protein interactome representing leaf physiological states of trees during the seasonal transitions. Gene set enrichment analysis revealed gene ontology terms that highlight molecular functions and biological processes possibly influenced by abiotic forcings such as recovery from drought and response to excess precipitation. Further, based on 324 co-regulated transcripts, we focused on a subset of GO terms that could be putatively attributed to late spring phenological shifts. Our conservative results indicate that extended transcriptome-based monitoring of forests can capture diverse ranges of responses including air quality, chronic disease, as well as herbivore outbreaks that require activation and/or downregulation of genes collectively tuning reaction norms maintaining the survival of long living trees such as the American beech.


Asunto(s)
Fagus , Humanos , Estaciones del Año , Fagus/genética , Hojas de la Planta/fisiología , Bosques , Árboles/fisiología , Transcriptoma
11.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675569

RESUMEN

There are several highly damaging Phytophthora species pathogenic to forest trees, many of which have been spread beyond their native range by the international trade of live plants and infested materials. Such introductions can be reduced through the development of better tools capable of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a volatilomics approach (solid-phase microextraction coupled to gas chromatography-mass spectrometry) to differentiate between several Phytophthora species in culture and discriminate between healthy and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified 14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one compound not observed in the other species; however, most detected compounds were shared between multiple species. Phytophthora polonica had the most unique compounds and was the least similar of all the species examined. The inoculated seedlings had qualitatively different volatile profiles and could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of three unknown compounds. This study supports the notion that volatiles are suitable for screening plant material, detecting tree pathogens, and differentiating between healthy and diseased material.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Phytophthora , Enfermedades de las Plantas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Enfermedades de las Plantas/microbiología , Microextracción en Fase Sólida , Quercus/química , Quercus/microbiología , Fagus/microbiología
12.
Int J Med Mushrooms ; 26(3): 15-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505900

RESUMEN

Currently, in many Asian and European countries, a group of mushrooms has been distinguished, which, due to their medicinal and/or dietary properties, are referred to as medicinal mushrooms. Hypsizygus marmoreus is a species valued for its proven nutritional and healing properties. In the scientific literature available so far, mainly from Asian countries, it is possible to find research on the therapeutic effect of H. marmoreus. Biologically active substances, their presence, and in particular, their level in this species have not been the subject of extensive research. The aim of the present review is to describe and summarize the dietary and therapeutic potential of this increasingly popular species among consumers in European countries. Because H. marmoreus is a species with known dietary and health-promoting properties, this species of wood fungi could be commonly obtained from cultivation in European countries.


Asunto(s)
Agaricales , Basidiomycota , Fagus , Asia
13.
Sci Rep ; 14(1): 6526, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499662

RESUMEN

Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in δ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response.


Asunto(s)
Fagus , Agua , Dióxido de Carbono/análisis , Bosques , Árboles , Italia , Sequías , Suelo
14.
Nat Plants ; 10(3): 367-373, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38459130

RESUMEN

High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.


Asunto(s)
Ecosistema , Fagus , Estaciones del Año , Tiempo (Meteorología) , Semillas/fisiología , Fagus/fisiología
15.
Nat Plants ; 10(3): 390-401, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467801

RESUMEN

Scientific testing including stable isotope ratio analysis (SIRA) and trace element analysis (TEA) is critical for establishing plant origin, tackling deforestation and enforcing economic sanctions. Yet methods combining SIRA and TEA into robust models for origin verification and determination are lacking. Here we report a (1) large Eastern European timber reference database (Betula, Fagus, Pinus, Quercus) tailored to sanctioned products following the Ukraine invasion; (2) statistical test to verify samples against a claimed origin; (3) probabilistic model of SIRA, TEA and genus distribution data, using Gaussian processes, to determine timber harvest location. Our verification method rejects 40-60% of simulated false claims, depending on the spatial scale of the claim, and maintains a low probability of rejecting correct origin claims. Our determination method predicts harvest location within 180 to 230 km of true location. Our results showcase the power of combining data types with probabilistic modelling to identify and scrutinize timber harvest location claims.


Asunto(s)
Fagus , Pinus , Ucrania , Betula , Genes de Plantas
16.
Sci Rep ; 14(1): 4083, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374095

RESUMEN

Acetylation of wood with acetic anhydride reduces the wood-moisture interaction, improves the dimensional stability and resistance against biodegradation. However, the adhesive bonding is affected by the modification, which is crucial to manufacture engineered wood products, such as laminated veneer lumber (LVL). In this study we report the bonding of 8-layered acetylated beech (Fagus sylvatica L.) LVL boards to 2-layered LVL beams. The beams were glued together at room temperature adding three common load-bearing construction adhesives: melamine-urea-formaldehyde (MUF), phenol-resorcinol-formaldehyde (PRF), and one-component polyurethane (PUR). The bonding performance was tested by assessing its dry and wet tensile shear strength (TSS) and wood failure percentage (WF). Also evaluated were the material's density and moisture content (MC). The surface was characterized prior to bonding by its pH, roughness, and contact angle (CA). The adhesive penetration was observed by fluorescence microscopy. Aside from MUF, applying PRF and PUR adhesives achieved good bonding performance on acetylated LVL and references. Acetylated LVL displayed a more hydrophobic behaviour, a higher pH, a somewhat smoother surface, and an increased density.


Asunto(s)
Fagus , Madera/química , Formaldehído/química , Microscopía Fluorescente , Adhesivos/química
17.
Sci Total Environ ; 919: 170726, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331275

RESUMEN

The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.


Asunto(s)
Ecosistema , Fagus , Biomasa , Fagus/fisiología , Sequías , Bosques , Carbono , Cambio Climático
18.
BMC Plant Biol ; 24(1): 45, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212695

RESUMEN

BACKGROUND: The species composition of tree stands plays an important role in shaping the properties of forest soils. The aim of our research was to determine the influence on soil properties of the root systems of six species of trees which form forest stands in the temperate climatic zone. The research covered areas including six tree species - Scots pine (Pinus sylvestris L.), European larch (Larix deciduas Mill.), English oak (Quercus robur L.), English ash (Fraxinus excelsior L.), European beech (Fagus sylvatica L.) and European hornbeam (Carpinus betulus L.). In our study, we determined the characteristics of the roots and the amount of carbon excreted alongside their exudates. Enzymatic activity, and the composition and diversity of the fungi and bacteria, were also determined in addition to the basic physicochemical properties of the soil samples. RESULTS: A strong relationship between the root characteristics and soil properties, including the pH, basic cation content and phosphorus content, was confirmed. In addition, the enzymatic activity of phosphatase, ß-glucosidase, N-acetyl-ß-D-glucosaminidase and ß-D-cellobiosidase were positively correlated with the root characteristics. The study on soil bacteria across different tree species revealed Proteobacteria and Actinobacteriota to be the most abundant phylum. Fungal analysis showed Basidiomycota and Ascomycota as the dominant phyla. Ascomycota dominated in hornbeam and oak soils. Mortierellomycota was remarkably more present in pine soil. CONCLUSIONS: This analysis of root systems and soil properties confirmed the distinctness of ash stands, which were also more abundant in various microorganisms. It was also found that soils affected by different tree species were characterised by varied fungal and bacterial composition. The ash had particularly beneficial impact on soil microbiota.


Asunto(s)
Ascomicetos , Fagus , Pinus sylvestris , Quercus , Ecosistema , Árboles , Suelo/química , Bosques , Exudados y Transudados , Microbiología del Suelo
19.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273515

RESUMEN

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Asunto(s)
Fagus , Picea , Pinus sylvestris , Quercus , Árboles , Bosques , Picea/fisiología , Noruega , Cambio Climático
20.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213092

RESUMEN

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Asunto(s)
Abies , Fagus , Picea , Pinus , Picea/fisiología , Floema , Clima , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...