Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163589

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is one of the leading causes of cancer-related deaths worldwide. Regorafenib, a multi-kinase inhibitor, is used as a second-line treatment for advanced HCC. Here, we aimed to investigate the mechanism of the antitumor effect of regorafenib on HCC and evaluate altered microRNA (miRNA) expression. Cell proliferation was examined in six HCC cell lines (HuH-7, HepG2, HLF, PLC/PRF/5, Hep3B, and Li-7) using the Cell Counting Kit-8 assay. Xenografted mouse models were used to assess the effects of regorafenib in vivo. Cell cycle analysis, western blotting analysis, and miRNA expression analysis were performed to identify the antitumor inhibitory potential of regorafenib on HCC cells. Regorafenib suppressed proliferation in HuH-7 cell and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in regorafenib-sensitive cells. During miRNA analysis, miRNA molecules associated with the antitumor effect of regorafenib were found. Regorafenib suppresses cell proliferation and tumor growth in HCC by decreasing cyclin D1 via alterations in intracellular and exosomal miRNAs in HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/biosíntesis , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , ARN Neoplásico/biosíntesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , ARN Neoplásico/genética , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Fase de Descanso del Ciclo Celular/genética
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216098

RESUMEN

The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/patología , Proliferación Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Niño , Terapia Combinada/métodos , Terapia por Estimulación Eléctrica/métodos , Estrés del Retículo Endoplásmico/genética , Fase G2/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mitocondrias/genética , Fase de Descanso del Ciclo Celular/genética
3.
Oncol Rep ; 47(2)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34970697

RESUMEN

Dysregulation of the cell cycle contributes to tumor progression. Cell division cycle­associated 3 (CDCA3) is a known trigger of mitotic entry and has been demonstrated to be constitutively upregulated in tumors. It is therefore associated with carcinogenic properties reported in various cancers. However, the role of CDCA3 in prostate cancer is unclear. In the present study, western blotting and analysis of gene expression profiling datasets determined that CDCA3 expression was upregulated in prostate cancer and was associated with a poor prognosis. CDCA3 knockdown in DU145 and PC­3 cells led to decreased cell proliferation and increased apoptosis, with increased protein expression levels of cleaved­caspase3. Further experiments demonstrated that downregulated CDCA3 expression levels induced G0/G1 phase arrest, which was attributed to increased p21 protein expression levels and decreased cyclin D1 expression levels via the regulation of NF­κB signaling proteins (NFκB­p105/p50, IKKα/ß, and pho­NFκB­p65). In conclusion, these results indicated that CDCA3 may serve a crucial role in prostate cancer and consequently, CDCA3 knockdown may be used as a potential therapeutic target.


Asunto(s)
Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , FN-kappa B/metabolismo , Neoplasias de la Próstata/genética , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Fase G1/genética , Humanos , Masculino , Fase de Descanso del Ciclo Celular/genética , Transducción de Señal , Regulación hacia Arriba
4.
Bioengineered ; 12(2): 12204-12214, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34783304

RESUMEN

Gastric cancer (GC) is a malignant tumor with high mortality, but research on its molecular mechanisms remain limited. This study is the first to explore the biological role of nuclear factor NFE2L3 (nuclear factor, erythroid 2 like 3) in GC. We used Western blot and RT-qPCR to detect gene expression at the protein or mRNA level. Short hairpin RNA (shRNA) transfection was used to inhibit NFE2L3 expression. CCK-8 and colony formation assays were used to detect cell proliferation. Cell migration, invasion, cell cycle and apoptosis were detected by Transwell assays and flow cytometry. The results showed that NFE2L3 was highly expressed in gastric cancer tissues and promoted gastric cancer cell proliferation and metastasis. Inhibiting NFE2L3 expression blocks the cell cycle and increases the proportion of apoptotic cells, whereas NFE2L3 expression promotes the epithelial-mesenchymal transformation (EMT) process. In summary, NFE2L3 is highly expressed in gastric cancer and promotes gastric cancer cell proliferation and metastasis and the EMT process.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Apoptosis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/patología , Regulación hacia Abajo/genética , Fase G1/genética , Técnicas de Silenciamiento del Gen , Ontología de Genes , Silenciador del Gen , Humanos , Metástasis de la Neoplasia , Mapas de Interacción de Proteínas/genética , Fase de Descanso del Ciclo Celular/genética , Regulación hacia Arriba/genética
5.
EMBO J ; 40(19): e104549, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368973

RESUMEN

The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus-end-out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E-cadherin, a cell adhesion molecule, localizes to these NSC-neuropil junctions. Msps and a plus-end directed motor protein Kinesin-2 promote NSC cell cycle re-entry and target E-cadherin to NSC-neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps-Kinesin-2 pathway that governs NSC reactivation, in part, by targeting E-cad to NSC-neuropil contact sites.


Asunto(s)
Ciclo Celular/genética , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fase de Descanso del Ciclo Celular/genética , Animales , Biomarcadores , Diferenciación Celular/genética , Polaridad Celular , Extensiones de la Superficie Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/metabolismo
6.
FASEB J ; 35(7): e21719, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34110646

RESUMEN

While G protein-coupled receptors (GPCRs) are known to be excellent drug targets, the second largest family of adhesion-GPCRs is less explored for their role in health and disease. ADGRF1 (GPR110) is an adhesion-GPCR and has an important function in neurodevelopment and cancer. Despite serving as a poor predictor of survival, ADGRF1's coupling to G proteins and downstream pathways remain unknown in cancer. We evaluated the effects of ADGRF1 overexpression on tumorigenesis and signaling pathways using two human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC) cell-line models. We also interrogated publicly available clinical datasets to determine the expression of ADGRF1 in various BC subtypes and its impact on BC-specific survival (BCSS) and overall survival (OS) in patients. ADGRF1 overexpression in HER2+ BC cells increased secondary mammosphere formation, soft agar colony formation, and % of Aldefluor-positive tumorigenic population in vitro and promoted tumor growth in vivo. ADGRF1 co-immunoprecipitated with both Gαs and Gαq proteins and increased cAMP and IP1 when overexpressed. However, inhibition of only the Gαs pathway by SQ22536 reversed the pro-tumorigenic effects of ADGRF1 overexpression. RNA-sequencing and RPPA analysis revealed inhibition of cell cycle pathways with ADGRF1 overexpression, suggesting cellular quiescence, as also evidenced by cell cycle arrest at the G0/1 phase and resistance to chemotherapy in HER2+ BC. ADGRF1 was significantly overexpressed in the HER2-enriched BC compared to luminal A and B subtypes and predicted worse BCSS and OS in these patients. Therefore, ADGRF1 represents a novel drug target in HER2+ BC, warranting discovery of novel ADGRF1 antagonists.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas Oncogénicas/genética , Receptor ErbB-2/genética , Receptores Acoplados a Proteínas G/genética , Animales , Neoplasias de la Mama/genética , Carcinogénesis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Fase G1/genética , Humanos , Ratones , Ratones Desnudos , Fase de Descanso del Ciclo Celular/genética , Transducción de Señal/genética
7.
Radiat Res ; 195(5): 412-426, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33755161

RESUMEN

Alternative end-joining (alt-EJ) is a DNA end resection-dependent, error-prone pathway utilized by vertebrate cells to repair DNA double-strand breaks (DSBs), but its engagement is linked to chromosomal translocations and genomic instability. Here, we report that when proliferating cells are exposed to ionizing radiation, treatment with nucleoside analogs (NAs) causes strong radiosensitization by increasing engagement of alt-EJ, while at the same time suppressing homologous recombination (HR) in S- and G2phase cells. This NA-mediated pathway shift may reflect a passive compensatory engagement of alt-EJ following HR suppression that is specific for S- and G2-phase cells, and/or the direct activation of alt-EJ throughout the cell cycle. To distinguish between these possibilities, we utilize here a cell culture model that exploits genetic and cell cycle-dependent inactivation of DSB repair pathways, to exclusively study alt-EJ and its modulation by NAs in murine and human cell lines. To this end, we allow LIG4-/--deficient cells to accumulate in G1/G0 phase by transfer to serum-deprived media and obtain cells deficient in c-NHEJ owing to the genetic LIG4 knockout, deficient in HR owing to the absence of S- or G2-phase cells, and compromised in their ability to carry out alt-EJ owing to their accumulation in G0. We find that in these cells irradiation and treatment with the NA, ß-arabinofuranosyladenine (araA), and to a lesser degree with other NAs, promptly activates suppressed alt-EJ that now functions at levels approximating those of c-NHEJ in wild-type cells. Results at high dose (20 Gy) generated using pulsed-field gel electrophoresis (PFGE) are corroborated by results at low dose (1 Gy) generated by scoring 53BP1 foci. Strikingly, araA treatment activates a normally undetectable DNA-end-resection at DSBs, which requires ATR activity, but proceeds unimpeded after CtIP knockdown. Treatment with araA increases the formation of chromosomal aberrations and enhances radiation-induced cell killing. The results support direct stimulation of resection by NAs and alt-EJ as a mechanism of their documented radiosensitizing potential. We propose that this stimulation also occurs in repair-proficient cells and that it occurs throughout the cell cycle. It may therefore be harnessed to develop protocols combining NAs with radiation to treat human cancer.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Nucleósidos/análogos & derivados , Nucleósidos/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fase de Descanso del Ciclo Celular/genética , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Ratones , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Fase de Descanso del Ciclo Celular/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
8.
Cell Mol Biol Lett ; 26(1): 6, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618674

RESUMEN

BACKGROUND: ZNF674-AS1, a recently characterized long noncoding RNA, shows prognostic significance in hepatocellular carcinoma and glioma. However, the expression and function of ZNF674-AS1 in non-small cell lung cancer (NSCLC) are unclear. METHODS: In this work, we investigated the expression of ZNF674-AS1 in 83 pairs of NSCLC specimens and adjacent noncancerous lung tissues. The clinical significance of ZNF674-AS1 in NSCLC was analyzed. The role of ZNF674-AS1 in NSCLC growth and cell cycle progression was explored. RESULTS: Our data show that ZNF674-AS1 expression is decreased in NSCLC compared to normal tissues. ZNF674-AS1 downregulation is significantly correlated with advanced TNM stage and decreased overall survival of NSCLC patients. Overexpression of ZNF674-AS1 inhibits NSCLC cell proliferation, colony formation, and tumorigenesis, which is accompanied by a G0/G1 cell cycle arrest. Conversely, knockdown of ZNF674-AS1 enhances the proliferation and colony formation of NSCLC cells. Biochemically, ZNF674-AS1 overexpression increases the expression of p21 through downregulation of miR-423-3p. Knockdown of p21 or overexpression of miR-423-3p blocks ZNF674-AS1-mediated growth suppression and G0/G1 cell cycle arrest. In addition, ZNF674-AS1 expression is negatively correlated with miR-423-3p in NSCLC specimens. CONCLUSIONS: ZNF674-AS1 suppresses NSCLC growth by downregulating miR-423-3p and inducing p21. This work suggests the therapeutic potential of ZNF674-AS1 in the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Fase de Descanso del Ciclo Celular/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Pronóstico , ARN Largo no Codificante/genética , Ensayo de Tumor de Célula Madre , Regulación hacia Arriba/genética
9.
Theranostics ; 11(7): 3452-3471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537097

RESUMEN

Rationale: SPINOPHILIN (SPN, PPP1R9B) is an important tumor suppressor involved in the progression and malignancy of different tumors depending on its association with protein phosphatase 1 (PP1) and the ability of the PP1-SPN holoenzyme to dephosphorylate retinoblastoma (pRB). Methods: We performed a mutational analysis of SPN in human tumors, focusing on the region of interaction with PP1 and pRB. We explored the effect of the SPN-A566V mutation in an immortalized non-tumorigenic cell line of epithelial breast tissue, MCF10A, and in two different p53-mutated breast cancer cells lines, T47D and MDA-MB-468. Results: We characterized an oncogenic mutation of SPN found in human tumor samples, SPN-A566V, that affects both the SPN-PP1 interaction and its phosphatase activity. The SPN-A566V mutation does not affect the interaction of the PP1-SPN holoenzyme with pocket proteins pRB, p107 and p130, but it affects its ability to dephosphorylate them during G0/G1 and G1, indicating that the PP1-SPN holoenzyme regulates cell cycle progression. SPN-A566V also promoted stemness, establishing a connection between the cell cycle and stem cell biology via pocket proteins and PP1-SPN regulation. However, only cells with both SPN-A566V and mutant p53 have increased tumorigenic and stemness properties. Conclusions: SPN-A566V, or other equivalent mutations, could be late events that promote tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Proteínas de Microfilamentos/genética , Mutación , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Fosfatasa 1/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Transformada , Línea Celular Tumoral , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Fase de Descanso del Ciclo Celular/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Cancer Res Clin Oncol ; 147(5): 1557-1564, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33387040

RESUMEN

INTRODUCTION: Pancreatic adenocarcinoma (PAAD) is among the deadliest forms of cancer globally. Carbonic anhydrase 12 (CA12) is known to play central roles in regulating many cancers, but its function in the context of PAAD is rarely discussed. This study was, therefore, designed to assess the expression of CA12 in PAAD and to explore its underlying mechanistic role in this cancer type. METHODS: Immunohistochemical staining was used to measure CA12 expression in PAAD samples. The functionality of pancreatic cancer cells expressing varying levels of CA12 was assessed through wound healing, Transwell, and CCK-8 assays. In addition, flow cytometry was used to measure apoptosis and cell cycle progression in these same cells, while Western blotting was used to analyze the expression of proteins associated with the NF-κB signaling pathway. RESULTS: PAAD tissue samples exhibited significant CA12 downregulation (P < 0.001), and lower CA12 expression was, in turn, associated with poorer overall survival (P < 0.001). CA12 overexpression significantly impaired the proliferation of PAAD cell lines, instead inducing their apoptotic death and G0/G1 phase cell cycle arrest (P < 0.05). We additionally found that CA12 may exert its tumor suppressive roles via modulating the NF-κB signaling pathway. CONCLUSION: These results indicate that CA12 functions as a tumor suppressor in PAAD and may thus be a novel therapeutic target that can be used to guide PAAD patient treatment.


Asunto(s)
Apoptosis/genética , Anhidrasas Carbónicas/genética , FN-kappa B/genética , Neoplasias Pancreáticas/genética , Transducción de Señal/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/patología , Pronóstico , Fase de Descanso del Ciclo Celular/genética
11.
Oxid Med Cell Longev ; 2021: 8807676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003521

RESUMEN

Warburgia ugandensis Sprague (W. ugandensis), widely distributed in Africa, is a traditional medicinal plant used for the treatment of various diseases including cancer. We intended to evaluate the anticolorectal cancer (CRC) activities of the crude extract from W. ugandensis (WUD) and reveal the underlying molecular mechanisms of its action. We found that WUD inhibited the proliferation of HT-29 and HCT116 cells in a time- and dose-dependent manner and induced intracellular ROS generation. The inhibitory effect of WUD on the proliferation of HT-29 and HCT116 cells could be attenuated by NAC (a ROS scavenger) in a dose-dependent manner. WUD induced G0/G1 phase arrest, down-regulated the protein expression of Cyclin D1 via ROS accumulation in HT-29 cells. In search of the molecular mechanism involved in WUD-induced Cyclin D1 down-regulation, it was found that WUD can suppress PI3K/Akt/GSK3ß signaling pathway in HT-29 cells. Next, it was found that WUD also activated apoptosis, poly-ADP ribose polymerase 1 (PARP1) cleavage and down-regulated pro-caspase 3 in HT-29 and HCT116 cells. Besides, WUD decreased the growth of colon tumors in vivo in the xenograft mouse model. We demonstrated for the first time that ROS and their modulation in the corresponding intracellular signaling could play a significant role in the potential activity of WUD against CRC cells.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Neoplasias del Colon/genética , Fase G1/genética , Extractos Vegetales/química , Fase de Descanso del Ciclo Celular/genética , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/patología , Femenino , Células HT29 , Humanos , Ratones , Especies Reactivas de Oxígeno
12.
Biomed Res Int ; 2021: 8305299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988227

RESUMEN

Zinc figure CCCH-type containing 15 (ZC3H15), also called developmentally regulated GTP-binding protein 1 (DRG1) family regulatory protein 1 (DFRP1), is a zinc finger containing protein. Despite playing a role in cellular signaling, it is found overexpressed in acute myeloid leukemia and also an independent prognostic marker in hepatocellular carcinoma patients. However, the biological effect of ZC3H15 in malignant melanoma (MM) remains unexplored. The expression of ZC3H15 in patients was analyzed using the R2: Genomics Analysis and Visualization Platform database. Immunohistochemical analysis, western blot, and qRT-PCR were used to detect ZC3H15 expression in melanoma tissues and cell lines. MTT, BrdU, flow cytometry assay, transwell, and western blot were performed to explore the proliferation, cell cycle, invasion, and migration of melanoma cells. We undertaken colony formation assay in vitro and tumor xenograft in vivo to detect the tumorigenicity of melanoma cells. In the present study, ZC3H15 was demonstrated highly expressed in melanoma tissues and cells. Elevated ZC3H15 impairs the survival of melanoma patients. Meanwhile, attenuation of ZC3H15 in melanoma cells inhibited cell proliferation and induced cycle arrest at G0/G1 phase. Consistently, the expression of cell cycle-related proteins cyclin dependent kinase 4 (CDK4), CDK6, and cyclin D1 (CCND1) was decreased while p21 was upregulated. Furthermore, we found the migration and invasion abilities were inhibited in ZC3H15-knockdown melanoma cells. In addition, downregulation of ZC3H15 resulted in inhibition of colony formation abilities in vitro and tumorigenesis in vivo. ZC3H15 promotes proliferation, migration/invasion, and tumorigenicity of melanoma cells. As a promising biomarker and therapeutic target in MM, ZC3H15 is worthy of further exploration.


Asunto(s)
Melanoma/genética , Melanoma/patología , Proteínas de Unión al ARN/genética , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Fase G1/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Pronóstico , Fase de Descanso del Ciclo Celular/genética , Transducción de Señal/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-32920140

RESUMEN

A comprehensive molecular mechanistic role of lutein on adipogenesis is not well understood. The present study focused to evaluate the effect of lutein at the early and late phase of adipocyte differentiation in vitro using a 3T3-L1 cell model. The effect of purified carotenoid on the viability of normal and differentiated 3T3-L1 cells was analyzed by WST-1 assay. Oil Red O and Nile red staining were employed to observe lipid droplets in mature adipocytes. The effect of lutein on gene and protein expression of major transcription factors and adipogenic markers was analyzed by RT-PCR and western blotting, respectively. The role of lutein on mitotic clonal expansion was analyzed by flow cytometry. The results showed a significant reduction (p < 0.05) in the accumulation of lipid droplets in lutein-treated (5 µM) cells. Inhibition in lipid accumulation was associated with down-regulated expression of CEBP-α and PPAR-γ at gene and protein levels. Subsequently, lutein repressed gene expression of FAS, FABP4, and SCD1 in mature adipocytes. Interestingly, it blocks the protein expression of CEBP-α and PPAR-γ in the initial stages of adipocyte differentiation. This early-stage inhibition of adipocyte differentiation is linked with repressed phosphorylation AKT and ERK. Further, upregulated cyclin D and down-regulated CDK4 and CDK2 in lutein treated adipocytes enumerate its role in delaying the cell cycle progression at the G0/G1 phase. Our results emphasize that adipogenesis inhibitory efficacy of lutein is potentiated by halting early phase regulators of adipocyte differentiation, which strengthens the competency of lutein besides its inevitable presence in the human body.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular/efectos de los fármacos , Luteína/farmacología , PPAR gamma/genética , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Dexametasona/farmacología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación de la Expresión Génica , Ratones , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Fase de Descanso del Ciclo Celular/genética , Transducción de Señal , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
14.
Yeast ; 38(1): 30-38, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33350501

RESUMEN

A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.


Asunto(s)
Fase de Descanso del Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Saccharomycetales/genética , Saccharomycetales/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , División Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Glucosa/metabolismo , Código de Histonas , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fase de Descanso del Ciclo Celular/genética , Fase de Descanso del Ciclo Celular/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
15.
Yeast ; 38(1): 12-29, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33350503

RESUMEN

Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.


Asunto(s)
División Celular/fisiología , Fase de Descanso del Ciclo Celular/genética , Saccharomycetales/genética , Saccharomycetales/fisiología , División Celular/genética , Fase de Descanso del Ciclo Celular/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces , Transducción de Señal/fisiología
16.
Yeast ; 38(1): 102-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179371

RESUMEN

Most cells spend the majority of their life in the non-proliferating, quiescent state. Transition to this state is crucial for microorganisms to survive long starvation periods and restart divisions afterwards. Experimental evolution allowed us to identify several mutation in genes that are presumably important for such transition in yeast cells. Most of these candidate genes belong to the SPS amino acid sensing pathway or to the SIR complex. We assembled these mutations on the ancestral strain background. Analysis of the quiescent/non-quiescent cell ratio of the starved yeast populations confirmed the crucial role of SSY1, the primary receptor component of the SPS sensor, in transition to the Q state. The evolved SSY1 mutations increased yeast sensitivity to amino acid presence in the environment. This resulted in decreased quiescent cell fraction and a 5.14% increase of the total amino acid content in the starved populations. We discuss external amino acid sensing via the SPS pathway as one of the mechanisms influencing transition to quiescence.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Mutación , Fase de Descanso del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Regulación Fúngica de la Expresión Génica , Transducción de Señal
17.
Biotechnol Lett ; 42(12): 2589-2594, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32804273

RESUMEN

OBJECTIVES: To realize a practical technology for recycling both cyclodextrin and resting-cells at the same time in phytosterol biotransformation using mycobacterial resting cells. RESULTS: In order to produce 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) efficiently and low-costly, a recycled phytosterols (PS) biotransformation process using mycobacterial resting cells was developed. By optimizing the ratio of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and PS to 1:1 (w/w), most products crystallized during the biotransformation process. So, the HBC was easily separated by low-speed (900×g) centrifugation with yield of 92%. The resting cells, HP-ß-CD and the residual products and substrates left in the reaction system were reused for another bioconversion cycle after PS supplement. Three continuous cycles were achieved without the supplement of cells and HP-ß-CD. In each batch, 80 g L-1 of PS was transformed to HBC with the space-time yield of HBC of 8.9-12.8 g L-1 day-1. CONCLUSIONS: This strategy reduced the cost of HBC production and simplified the purification process.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Biotransformación , Colestenonas/metabolismo , Fitosteroles/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/química , Proteínas Bacterianas , Colestenonas/química , Mycobacterium/efectos de los fármacos , Mycobacterium/crecimiento & desarrollo , Fitosteroles/química , Fase de Descanso del Ciclo Celular/genética
18.
Biomed Pharmacother ; 130: 110519, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32682111

RESUMEN

Accumulating evidence suggests that miR-483-3p is implicated in maintaining biological properties in human cancers. However, its biological roles in rheumatoid arthritis (RA) remain unknown. miR-483-3p levels in synovial tissue samples and fibroblast-like synoviocytes (FLSs) were determined using quantitative real-time PCR. The CCK-8 assay and EdU staining were performed to assess cell proliferation in RA FLSs after transfection with miR-483-3p mimics or inhibitor. Flow cytometry with Annexin V-FITC staining or PI staining was performed to assess apoptosis or cell cycle progression in RA FLSs, respectively. miR-483-3p was upregulated in RA, which markedly promoted cell proliferation, induced the G0/G1-to-S phase transition, and suppressed apoptosis in RA FLSs, whereas miR-483-3p silencing yielded opposite results. Moreover, insulin growth factor 1 (IGF-1) was detected as a direct miR-483-3p target. IGF-1 silencing partially restored cell proliferation, the G0/G1-to-S phase transition, and apoptosis suppression in RA FLSs via miR-483-3p inhibition. Our results showed that miR-483-3p promotes RA FLSs proliferation by targeting IGF-1, suggesting a potential strategy for diagnostic and treatment strategy for RA.


Asunto(s)
Artritis Reumatoide/genética , Fibroblastos/patología , Factor I del Crecimiento Similar a la Insulina/genética , MicroARNs/genética , Líquido Sinovial/citología , Apoptosis/genética , Artritis Reumatoide/patología , Proliferación Celular , Células Cultivadas , Marcación de Gen , Humanos , MicroARNs/metabolismo , Fase de Descanso del Ciclo Celular/genética , Fase S/genética , Regulación hacia Arriba
19.
Hum Cell ; 33(3): 759-767, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32266659

RESUMEN

The function of miR-186 in the progression of renal cell carcinoma (RCC) remains poorly investigated. Our study aims to identify the molecular mechanism underlying miR-186-regulated proliferation, migration and invasion of RCC. Firstly, our data confirmed that miR-186 was significantly reduced and CDK6 was obviously increased in RCC tissues and cells. MiR-186 or CDK6 was associated with advanced TNM stage, lymph node metastasis and poor prognosis. MiR-186 significantly inhibited cell proliferation, migration, invasion and in vivo tumor growth, induced apoptosis, and blocked cell cycle progression in G0/G1 phase. MiR-186 also induced Bax expression and inhibited the expressions of Bcl-2, cyclin D1 and epithelial-mesenchymal transition (EMT)-related genes. Additionally, CDK6 expression was downregulated by miR-186 via binding to its 3'-untranslated region (3'-UTR). Moreover, ectopic expression of CDK6 could partially abrogate the inhibitory effect of miR-186. In conclusion, miR-186 suppresses proliferation, migration and invasion of RCC by inhibiting CDK6 expression.


Asunto(s)
Carcinoma de Células Renales/genética , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , MicroARNs/fisiología , Regiones no Traducidas 3'/genética , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Expresión Génica/genética , Humanos , Metástasis Linfática/genética , Metástasis Linfática/patología , Invasividad Neoplásica/genética , Fase de Descanso del Ciclo Celular/genética
20.
Genes (Basel) ; 11(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111003

RESUMEN

Drosophila underreplicate the DNA of thoracic nuclei, stalling during S phase at a point that is proportional to the total genome size in each species. In polytene tissues, such as the Drosophila salivary glands, all of the nuclei initiate multiple rounds of DNA synthesis and underreplicate. Yet, only half of the nuclei isolated from the thorax stall; the other half do not initiate S phase. Our question was, why half? To address this question, we use flow cytometry to compare underreplication phenotypes between thoracic tissues. When individual thoracic tissues are dissected and the proportion of stalled DNA synthesis is scored in each tissue type, we find that underreplication occurs in the indirect flight muscle, with the majority of underreplicated nuclei in the dorsal longitudinal muscles (DLM). Half of the DNA in the DLM nuclei stall at S phase between the unreplicated G0 and fully replicated G1. The dorsal ventral flight muscle provides the other source of underreplication, and yet, there, the replication stall point is earlier (less DNA replicated), and the endocycle is initiated. The differences in underreplication and ploidy in the indirect flight muscles provide a new tool to study heterochromatin, underreplication and endocycle control.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Músculo Esquelético/crecimiento & desarrollo , Tórax/crecimiento & desarrollo , Animales , Núcleo Celular/genética , ADN/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Vuelo Animal , Citometría de Flujo , Fase G1/genética , Músculo Esquelético/metabolismo , Cromosomas Politénicos/genética , Fase de Descanso del Ciclo Celular/genética , Fase S/genética , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/metabolismo , Tórax/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...