Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Cells ; 11(2)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053315

RESUMEN

The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.


Asunto(s)
Fenómenos Electrofisiológicos/genética , Epigénesis Genética , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Ensayos Clínicos como Asunto , Fenómenos Electrofisiológicos/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
2.
Cell Rep ; 34(11): 108868, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730571

RESUMEN

Mismatch negativity (MMN) is a differential electrophysiological response measuring cortical adaptability to unpredictable stimuli. MMN is consistently attenuated in patients with psychosis. However, the genetics of MMN are uncharted, limiting the validation of MMN as a psychosis endophenotype. Here, we perform a transcriptome-wide association study of 728 individuals, which reveals 2 genes (FAM89A and ENGASE) whose expression in cortical tissues is associated with MMN. Enrichment analyses of neurodevelopmental expression signatures show that genes associated with MMN tend to be overexpressed in the frontal cortex during prenatal development but are significantly downregulated in adulthood. Endophenotype ranking value calculations comparing MMN and three other candidate psychosis endophenotypes (lateral ventricular volume and two auditory-verbal learning measures) find MMN to be considerably superior. These results yield promising insights into sensory processing in the cortex and endorse the notion of MMN as a psychosis endophenotype.


Asunto(s)
Estudio de Asociación del Genoma Completo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Intrínsecamente Desordenadas/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Receptores Virales/genética , Transcriptoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ventrículos Cerebrales/patología , Niño , Fenómenos Electrofisiológicos/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Memoria a Corto Plazo , Persona de Mediana Edad , Neurotransmisores/metabolismo , Fenotipo , Receptores Virales/metabolismo , Esquizofrenia/fisiopatología , Adulto Joven
3.
J Cereb Blood Flow Metab ; 41(5): 1131-1144, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32811262

RESUMEN

MiR-17-92 cluster enriched exosomes derived from multipotent mesenchymal stromal cells (MSCs) increase functional recovery after stroke. Here, we investigate the mechanisms underlying this recovery. At 24 h (h) post transient middle cerebral artery occlusion, rats received control liposomes or exosomes derived from MSCs infected with pre-miR-17-92 expression lentivirus (Exo-miR-17-92+) or control lentivirus (Exo-Con) intravenously. Compared to the liposomes, exosomes significantly reduced the intracortical microstimulation threshold current of the contralateral cortex for evoking impaired forelimb movements (day 21), increased the neurite and myelin density in the ischemic boundary area, and contralesional axonal sprouting into the caudal forelimb area of ipsilateral side and in the denervated spinal cord (day 28), respectively. The Exo-miR-17-92+ further enhanced axon-myelin remodeling and electrophysiological recovery compared with the EXO-Con. Ex vivo cultured rat brain slice data showed that myelin and neuronal fiber density were significantly increased by Exo-miR-17-92+, while significantly inhibited by application of the PI3K/Akt/mTOR pathway inhibitors. Our studies suggest that the miR-17-92 cluster enriched MSC exosomes enhanced neuro-functional recovery of stroke may be attributed to an increase of axonal extension and myelination, and this enhanced axon-myelin remodeling may be mediated in part via the activation of the PI3K/Akt/mTOR pathway induced by the downregulation of PTEN.


Asunto(s)
Infarto de la Arteria Cerebral Media/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Accidente Cerebrovascular/fisiopatología , Administración Intravenosa , Animales , Axones/metabolismo , Regulación hacia Abajo , Fenómenos Electrofisiológicos/genética , Exosomas/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Liposomas/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , MicroARNs/administración & dosificación , MicroARNs/metabolismo , Modelos Animales , Vaina de Mielina/metabolismo , Neuritas/fisiología , Neurogénesis/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/ultraestructura , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
4.
Methods Mol Biol ; 2191: 151-169, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32865744

RESUMEN

The delivery of cells into damaged myocardium induces limited cardiac regeneration due to extensive cell death. In an effort to limit cell death, our lab formulates three-dimensional matrices as a delivery system for cell therapy. Our primary work has been focused on the formation of engineered cardiac tissues (ECTs) from human-induced pluripotent stem cell-derived engineered cardiac cells. However, ECT immaturity hinders ability to fully recover damaged myocardium. Various conditioning regimens such as mechanical stretch and/or electric pacing have been used to activate maturation pathways. To improve ECT maturity, we use non-contacting chronic light stimulation using heterologously expressed light-sensitive channelrhodopsin ion channels. We transduce ECTs with an AAV packaged channelrhodopsin and chronically optically pace (C-OP) ECTs for 1 week above the intrinsic beat rate, resulting in increased ECT electrophysiological properties.


Asunto(s)
Channelrhodopsins/genética , Células Madre Pluripotentes Inducidas/citología , Optogenética/métodos , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular/genética , Fenómenos Electrofisiológicos/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Regeneración/genética
5.
Methods Mol Biol ; 2191: 287-307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32865751

RESUMEN

Optogenetic approaches have evolved as potent means to investigate cardiac electrophysiology, with research ranging from the study of arrhythmia mechanisms to effects of cardiac innervation and heterocellular structural and functional interactions, both in healthy and diseased myocardium. Most commonly, these studies use channelrhodopsin-2 (ChR2)-expressing murine models that enable light-activated depolarization of the target cell population. However, each newly generated mouse line requires thorough characterization, as cell-type specific ChR2 expression cannot be taken for granted, and the electrophysiological response of its activation in the target cell should be evaluated. In this chapter, we describe detailed protocols for assessing ChR2 specificity using immunohistochemistry, isolation of specific cell populations to analyze electrophysiological effects of ChR2 activation with the patch-clamp technique, and whole-heart experiments to assess in situ effects of optical stimulation.


Asunto(s)
Channelrhodopsins/genética , Técnicas Electrofisiológicas Cardíacas/métodos , Fenómenos Electrofisiológicos/genética , Optogenética/métodos , Potenciales de Acción/genética , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Humanos , Luz , Ratones , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp/métodos
6.
STAR Protoc ; 1(3): 100146, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377040

RESUMEN

Obtaining electrophysiological recordings and gene expression information from the same neuron (Patch-seq) brings forward a unique opportunity to study the transcriptional correlates of functional properties and vice versa. Here, we provide a detailed Patch-seq protocol tailored to the specialized demands of studying small interneurons. Focusing on the technically demanding process of transitioning between patch recordings and cell extraction, our protocol describes and troubleshoots steps for successfully collecting small interneurons, allowing for multi-modal Patch-seq interrogation of this crucial cell type.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Interneuronas/citología , Técnicas de Placa-Clamp/métodos , Fenómenos Electrofisiológicos/genética , Fenómenos Electrofisiológicos/fisiología , Expresión Génica/genética , Interneuronas/metabolismo , Interneuronas/fisiología , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
7.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32833011

RESUMEN

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Asunto(s)
Síndrome de Angelman/genética , Predisposición Genética a la Enfermedad , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/genética , Impresión Genómica/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Isoformas de Proteínas/genética
8.
Hum Mol Genet ; 29(18): 3003-3013, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32821949

RESUMEN

Pathogenic mutations in the solute carrier family 7 member 5 (SLC7A5) gene, which encodes an amino acid transporter cause microcephaly and seizures, yet the mechanisms responsible for these phenotypes are unclear. Models have demonstrated that Slc7a5 deletion is embryonic lethal and that these embryos lack a fully formed telencephalon. This phenotype is similar to that of mammalian target of rapamycin (mTOR) protein kinase deletion or mTOR inhibition. Notably, in many cells, Slc7a5 import of amino acids is required to maintain mTOR activity. Slc7a5 is present within neurogenic regions during embryogenesis, is found in cultured neurons and can modulate neuronal electrophysiological properties. However, Slc7a5 is also highly expressed within endothelial cells of the blood-brain barrier where removal in conditional mice leads to severe behavioral defects and non-cell autonomous changes in neurons. Therefore, the extent that neural Slc7a5 is required for development is unclear. Here, subventricular zone neural stem cells that generate olfactory bulb granule cell neurons were electroporated with SLC7A5 or Slc7a5 short hairpin RNA encoding plasmids. Although early phases of neural development were unaltered, Slc7a5 knockdown effected late phases of GC dendrite maturation and survival. Slc7a5 knockdown also decreased mTOR pathway activity. Ras homolog enriched in brain, an mTOR activator, rescued the effect of Slc7a5 knockdown on mTOR pathway activity and dendrite arbors. The data presented here demonstrate that Slc7a5 is required for GC mTOR pathway activity, maturation and survival, which may help explain why Slc7a5 mutations prevent normal brain development and function.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/genética , Microcefalia/genética , Convulsiones/genética , Serina-Treonina Quinasas TOR/genética , Aminoácidos/genética , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Fenómenos Electrofisiológicos/genética , Desarrollo Embrionario/genética , Humanos , Ratones , Microcefalia/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo , Neuronas/patología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/patología , Convulsiones/patología , Eliminación de Secuencia/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
9.
J Neurophysiol ; 123(6): 2449-2464, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401131

RESUMEN

Somatic mutations have emerged as the likely cause of focal epilepsies associated with developmental malformations and epilepsy-associated glioneuronal tumors (GNT). Somatic BRAFV600E mutations in particular have been detected in the majority of low-grade neuroepithelial tumors (LNETS) and in neurons in focal cortical dysplasias adjacent to epilepsy-associated tumors. Furthermore, conditional expression of an activating BRAF mutation in neocortex causes seizures in mice. In this study we characterized the cellular electrophysiology of layer 2/3 neocortical pyramidal neurons induced to express BRAFV600E from neural progenitor stages. In utero electroporation of a piggyBac transposase plasmid system was used to introduce transgenes expressing BRAF wild type (BRAFwt), BRAFV600E, and/or enhanced green fluorescent protein (eGFP) and monomeric red fluorescent protein (mRFP) into radial glia progenitors in mouse embryonic cortex. Whole cell patch-clamp recordings of pyramidal neurons in slices prepared from both juvenile and adult mice showed that BRAFV600E resulted in neurons with a distinct hyperexcitable phenotype characterized by depolarized resting membrane potentials, increased input resistances, lowered action potential (AP) thresholds, and increased AP firing frequencies. Some of the BRAFV600E-expressing neurons normally destined for upper cortical layers by their birthdate were stalled in their migration and occupied lower cortical layers. BRAFV600E-expressing neurons also displayed increased hyperpolarization-induced inward currents (Ih) and decreased sustained potassium currents. Neurons adjacent to BRAFV600E transgene-expressing neurons, and neurons with TSC1 genetically deleted by CRISPR or those induced to carry PIK3CAE545K transgenes, did not show an excitability phenotype similar to that of BRAFV600E-expressing neurons. Together, these results indicate that BRAFV600E leads to a distinct hyperexcitable neuronal phenotype.NEW & NOTEWORTHY This study is the first to report the cell autonomous effects of BRAFV600E mutations on the intrinsic neuronal excitability. We show that BRAFV600E alters multiple electrophysiological parameters in neocortical neurons. Similar excitability changes did not occur in cells neighboring BRAFV600E-expressing neurons, after overexpression of wild-type BRAF transgenes, or after introduction of mutations affecting the mammalian target of rapamycin (mTOR) or the catalytic subunit of phosphoinositide 3-kinase (PIK3CA). We conclude that BRAFV600E causes a distinct, cell autonomous, highly excitable neuronal phenotype when introduced somatically into neocortical neuronal progenitors.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Neocórtex/fisiología , Células-Madre Neurales/fisiología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Células Piramidales/fisiología , Animales , Excitabilidad Cortical/fisiología , Fenómenos Electrofisiológicos/genética , Electroporación , Embrión de Mamíferos , Femenino , Masculino , Ratones , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Embarazo , Proteínas Proto-Oncogénicas B-raf/genética , Células Piramidales/metabolismo
10.
Dev Med Child Neurol ; 62(7): 784-792, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227486

RESUMEN

Genetic variants in brain-expressed voltage-gated sodium channels (SCNs) have emerged as one of the most frequent causes of Mendelian forms of epilepsy and neurodevelopmental disorders (NDDs). This review explores the biological concepts that underlie sodium channel NDDs, explains their phenotypic heterogeneity, and appraises how this knowledge may inform clinical practice. We observe that excitatory/inhibitory neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain development, homeostasis, and neurological diseases. We hypothesize that a detailed understanding of gene expression, variant tolerance, location, and function, as well as timing of seizure onset can aid the understanding of how variants in SCN1A, SCN2A, SCN3A, and SCN8A contribute to seizure aetiology and inform treatment choice. We propose a model in which variant type, development-specific gene expression, and functions of SCNs explain the heterogeneity of sodium channel associated NDDs. Understanding of basic disease mechanisms and detailed knowledge of variant characteristics have increasing influence on clinical decision making, enabling us to stratify treatment and move closer towards precision medicine in sodium channel epilepsy and NDDs. WHAT THIS PAPER ADDS: Sodium-channel disorder heterogeneity is explained by variant-specific gene expression timing and function. Gene tolerance and location analyses aid sodium channel variant interpretation. Sodium-channel variant characteristics can contribute to clinical decision making.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Epilepsia/fisiopatología , Expresión Génica/fisiología , Canal de Sodio Activado por Voltaje NAV1.1/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Fenómenos Electrofisiológicos/genética , Epilepsia/genética , Expresión Génica/genética , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Trastornos del Neurodesarrollo/genética
11.
Clin Genet ; 97(1): 198-208, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30963536

RESUMEN

Whether the presence of SCN5A mutation is a predictor of BrS risk remains controversial, and patient selection bias may have weakened previous findings. Therefore, we performed this study to clarify the clinical characteristics and outcomes of BrS probands with SCN5A mutations. We systematically retrieved eligible studies published through October 2018. A total of 17 studies enrolling 1780 BrS patients were included. Overall, our results found that compared with BrS patients without SCN5A mutations, patients with SCN5A mutations exhibited a younger age at the onset of symptoms and higher rate of the spontaneous type-1 electrocardiogram pattern, more pronounced conduction or repolarization abnormalities, and increased atrial vulnerability. In addition, the presence of SCN5A mutations was associated with an elevated risk of major arrhythmic events in both Asian (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.07-3.11; P = .03) and Caucasian (OR = 2.24, 95% CI 1.02-4.90; P = .04) populations. In conclusions, patients with SCN5A mutations exhibit more pronounced electrophysiological defects and more severe prognosis. Clinicians should be cautious when utilizing genetic testing for risk stratification or treatment guidance before determining whether the causal relationship regarding SCN5A mutation status is an independent predictor of risk.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Canal de Sodio Activado por Voltaje NAV1.5/genética , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/patología , Fenómenos Electrofisiológicos/genética , Pruebas Genéticas , Humanos , Mutación
12.
J Neurosci ; 40(3): 496-508, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31719168

RESUMEN

Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.


Asunto(s)
Canales Iónicos/biosíntesis , Proteínas de Neurofilamentos/biosíntesis , Neuronas/metabolismo , Sinapsis/genética , Núcleos Vestibulares/metabolismo , Potenciales de Acción , Animales , Axones/metabolismo , Axones/fisiología , Fenómenos Electrofisiológicos/genética , Femenino , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Núcleos Vestibulares/citología
13.
J Mol Biol ; 432(2): 605-620, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31711960

RESUMEN

Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.


Asunto(s)
Fenómenos Electrofisiológicos/genética , Desarrollo Embrionario/genética , Metabolismo Energético , Xenopus laevis/fisiología , Animales , Calcio/metabolismo , Embrión no Mamífero/fisiología , Desarrollo Embrionario/fisiología , Transporte Iónico/genética , Potenciales de la Membrana , Transducción de Señal/genética , Xenopus laevis/genética
14.
Proc Natl Acad Sci U S A ; 116(33): 16332-16337, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31371510

RESUMEN

Phospholipid flippases (P4-ATPases) utilize ATP to translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thus generating and maintaining transmembrane lipid asymmetry essential for a variety of cellular processes. P4-ATPases belong to the P-type ATPase protein family, which also encompasses the ion transporting P2-ATPases: Ca2+-ATPase, Na+,K+-ATPase, and H+,K+-ATPase. In comparison with the P2-ATPases, understanding of P4-ATPases is still very limited. The electrogenicity of P4-ATPases has not been explored, and it is not known whether lipid transfer between membrane bilayer leaflets can lead to displacement of charge across the membrane. A related question is whether P4-ATPases countertransport ions or other substrates in the opposite direction, similar to the P2-ATPases. Using an electrophysiological method based on solid supported membranes, we observed the generation of a transient electrical current by the mammalian P4-ATPase ATP8A2 in the presence of ATP and the negatively charged lipid substrate phosphatidylserine, whereas only a diminutive current was generated with the lipid substrate phosphatidylethanolamine, which carries no or little charge under the conditions of the measurement. The current transient seen with phosphatidylserine was abolished by the mutation E198Q, which blocks dephosphorylation. Likewise, mutation I364M, which causes the neurological disorder cerebellar ataxia, mental retardation, and disequilibrium (CAMRQ) syndrome, strongly interfered with the electrogenic lipid translocation. It is concluded that the electrogenicity is associated with a step in the ATPase reaction cycle directly involved in translocation of the lipid. These measurements also showed that no charged substrate is being countertransported, thereby distinguishing the P4-ATPase from P2-ATPases.


Asunto(s)
Adenosina Trifosfatasas/genética , Transporte Biológico/genética , Lípidos de la Membrana/genética , Proteínas de Transferencia de Fosfolípidos/genética , Fosfolípidos/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Ataxia Cerebelosa/genética , Citoplasma/genética , Citoplasma/metabolismo , Fenómenos Electrofisiológicos/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/química , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Humanos , Discapacidad Intelectual/genética , Lípidos de la Membrana/metabolismo , Mutación/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/genética , Especificidad por Sustrato/genética
15.
Curr Opin Genet Dev ; 57: 61-69, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31442749

RESUMEN

Cell-to-cell communication is a cornerstone of multicellular existence. The ancient mechanism of sharing information between cells using the conductance of ions across cell membranes and the propagation of electrical signals through tissue space is a powerful means of efficiently controlling cell decisions and behaviors. Our understanding of how cells use changes in 'bioelectrical' signals to elicit systems-level responses has dramatically improved in recent years. We are now in a position to not just describe these changes, but to also predictively alter them to learn more about their importance for developmental biology and regenerative medicine. Recent work is helping researchers construct a more integrative view of how these simple controls can orchestrate downstream changes in protein signaling pathways and gene regulatory networks. In this review, we highlight experiments and analyses that have led to new insights in bioelectrical controls, specifically as key modulators of complex pattern formation and tissue regeneration. We also discuss opportunities for the development of new therapeutic approaches in regenerative medicine applications by exploiting this fundamental biological phenomenon.


Asunto(s)
Comunicación Celular/genética , Movimiento Celular/genética , Morfogénesis/genética , Medicina Regenerativa/tendencias , Animales , Tipificación del Cuerpo/genética , Biología Evolutiva/tendencias , Fenómenos Electrofisiológicos/genética , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos
16.
Nat Neurosci ; 22(8): 1235-1247, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31235931

RESUMEN

Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/psicología , Conducta Animal , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/genética , Citosol/enzimología , Fenómenos Electrofisiológicos/genética , Femenino , Humanos , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Mutación Missense/genética , Comportamiento de Nidificación , Neuronas/enzimología , Desempeño Psicomotor , Proteínas de Unión al ARN , Natación/psicología , Dedos de Zinc
17.
PLoS Biol ; 17(4): e3000194, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30973865

RESUMEN

Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.


Asunto(s)
Percepción Auditiva/genética , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Pérdida Auditiva/genética , Estimulación Acústica/métodos , Adulto , Animales , Proteínas de Transporte de Anión/genética , Niño , Fenómenos Electrofisiológicos/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Estudios de Asociación Genética , Audición/genética , Pérdida Auditiva/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Neuropharmacology ; 161: 107568, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885609

RESUMEN

Dopamine and glutamate transporters (DAT and GLT-1, respectively) share some biophysical characteristics, as both are secondary active carriers coupled to electrochemical ion gradients. In order to identify common or specific components of their respective proteomes, we performed a proximity labelling assay (BioID) in the hippocampal cell line HT22. While most of the identified proteins were specific for each transporter (and will be analyzed elsewhere), we detected two membrane proteins in the shared interactome of GLT-1 and DAT: the transmembrane protein 263 (Tmem263) and the potassium channel protein Kv7.3. However, only Kv7.3 formed immunoprecipitable complexes with GLT-1 and DAT in lysates of transfected HEK293 cells. Moreover, either DAT or GLT-1 co-clustered with Kv7.2/7.3 along the axonal tracts in co-transfected primary neurons, indicating a close spatial proximity between these proteins. Kv7.3, forming heterotetramers with the closely related subunit Kv7.2, underlies the M-currents that control the resting membrane potential and spiking activity in neurons. To investigate whether the presence of the potassium channel affected DAT or GLT-1 function, we performed uptake determinations using radioactive substrate and electrophysiological measurements. Uptake through both transporters was mildly stimulated by the presence of the channel, an effect that was reversed by the potassium channel blocker XE-991. Electrophysiological recording (in transfected HT22 and differentiated SH-SY5Y cells) indicated that the depolarizing effect induced by the presence of the neurotransmitter was reverted by the activity of the potassium channel. Altogether, these data suggest a tight spatial and functional relationship between the DAT/GLT-1 transporters and the Kv7.2/7.3 potassium channel that immediately readjusts the membrane potential of the neuron, probably to limit the neurotransmitter-mediated neuronal depolarization. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Animales , Línea Celular , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Fenómenos Electrofisiológicos/genética , Transportador 2 de Aminoácidos Excitadores/genética , Femenino , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Potenciales de la Membrana/genética , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Embarazo , Cultivo Primario de Células , Ratas
19.
J Neurosci ; 39(15): 2837-2846, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626698

RESUMEN

The nucleus tractus solitarii (NTS) is implicated in the control of breathing, but the neuronal phenotype and circuit mechanism involved in such a physiological function remain incompletely understood. This study focused on the respiratory role of paired-like homeobox 2b gene (Phox2b)-expressing NTS neurons and sought to determine whether selective stimulation of this set of neurons activates breathing in male mice. A Cre-dependent vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was microinjected into the NTS of Phox2b-Cre transgenic mice. The hM3Dq-transduced neurons were pharmacologically activated in conscious mice while respiratory effects were measured by plethysmography. We demonstrate that chemogenetic stimulation of Phox2b-expressing NTS neurons significantly increased baseline minute volume via an increase in respiratory frequency rather than tidal volume. Chemogenetic stimulation also synergized with moderate CO2 stimulation to enhance pulmonary ventilatory response. Selective ablation of Phox2b-expressing NTS neurons notably attenuated a hypercapnic ventilatory response. Moreover, histological evidence revealed that stimulation of Phox2b-expressing NTS neurons increased neuronal activity of the preBötzinger complex. Finally, we presented the neuroanatomical evidence of direct projection of Phox2b-expressing NTS neurons to putative respiratory central pattern generator. Overall, these findings suggest that selective activation of Phox2b-expressing NTS neurons potentiates baseline pulmonary ventilation via an excitatory drive to respiratory central pattern generator and this group of neurons is also required for the hypercapnic ventilatory response.SIGNIFICANCE STATEMENT The nucleus tractus solitarii (NTS) has been implicated in the control of breathing. The paired-like homeobox 2b gene (Phox2b) is the disease-defining gene for congenital central hypoventilation syndrome and is restrictively present in brainstem nucleus, including the NTS. Using a chemogenetic approach, we demonstrate herein that selective stimulation of Phox2b-expressing NTS neurons vigorously potentiates baseline pulmonary ventilation via an excitatory drive to respiratory central pattern generator in rodents. Genetic ablation of these neurons attenuates the hypercapnic ventilatory response. We also suggest that a fraction of Phox2b-expressing neurons exhibit CO2 sensitivity and presumably function as central respiratory chemoreceptors. The methodology is expected to provide a future applicability to the patients with sleep-related hypoventilation or apnea.


Asunto(s)
Proteínas de Homeodominio/fisiología , Neuronas/metabolismo , Respiración , Núcleo Solitario/metabolismo , Factores de Transcripción/fisiología , Animales , Dióxido de Carbono/farmacología , Generadores de Patrones Centrales , Fenómenos Electrofisiológicos/genética , Fenómenos Electrofisiológicos/fisiología , Proteínas de Homeodominio/genética , Hipercapnia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microinyecciones , Pruebas de Función Respiratoria , Mecánica Respiratoria , Núcleo Solitario/citología , Factores de Transcripción/genética
20.
Cell Rep ; 26(1): 266-278.e5, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605681

RESUMEN

Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.


Asunto(s)
Fenómenos Electrofisiológicos/genética , Electrofisiología/métodos , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...