Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animal ; 11(12): 2184-2192, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28571587

RESUMEN

The appropriate supply of nutrients in pregnant cows has been associated with the optimal development of foetal tissues, performance of their progeny and their meat quality. The aim of this study was to evaluate supplementation effects of grazing cows in different stages of gestation on skeletal muscle development and performance of the progeny. Thereby, 27 Nellore cows were divided into three groups (n=9 for each group) and their progeny as follows: UNS, unsupplemented during gestation; MID, supplemented from 30 to 180 days of gestation; LATE, supplemented from 181 to 281 days of gestation. The percentage composition of the supplement provided for the matrices was the following: ground corn (26.25%), wheat bran (26.25%) and soya bean meal (47.5%). The supplement was formulated to contain 30% CP. Supplemented matrices received 150 kg of supplement (1 and 1.5 kg/day for cows in the MID and LATE groups, respectively). After birth, a biopsy was performed to obtain samples of skeletal muscle tissue from calves to determine number and size of muscle fibres and for messenger RNA (mRNA) expression analysis. The percentage composition of the supplement provided for the progeny was the following: ground corn grain (30%), wheat bran (30%), soya bean meal (35%) and molasses (5%). The supplement was formulated to contain 25% CP and offered in an amount of 6 g/kg BW. Performance of the progeny was monitored throughout the suckling period. Means were submitted to ANOVA and regression, and UNS, MID and LATE periods of supplementation were compared. Differences were considered at P0.10). Similarly, no differences were observed between calves for nutrient intake (P>0.10). However, greater subcutaneous fat thickness (P=0.006) was observed in the calves of LATE group. The ribeye area (P=0.077) was greater in calves born from supplemented compared with UNS cows. The supplementation of pregnant cows did not affect the muscle fibre size of their progeny (P=0.208). On the other hand, calves born from dams supplemented at mid-gestation had greater muscle fibre number (P=0.093) compared with calves from UNS group. Greater mRNA expression of peroxysome proliferator-activated receptor α (P=0.073) and fibroblast growth factor 2 (P=0.003) was observed in the calves born from MID cows. Although strategic supplementation did not affect the BW of offspring, it did cause changes in carcass traits, number of myofibres, and mRNA expression of a muscle hypertrophy and lipid oxidation markers in skeletal muscle of the offspring.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Desarrollo de Músculos/efectos de los fármacos , Fenómenos Fisiologicos de la Nutrición Prenatal/efectos de los fármacos , Animales , Suplementos Dietéticos/análisis , Ingestión de Energía , Femenino , Embarazo , Estaciones del Año
2.
Mol Neurobiol ; 54(3): 2090-2106, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26924316

RESUMEN

Evidence suggests that idiopathic Parkinson's disease (PD) is the consequence of a neurodevelopmental disruption, rather than strictly a consequence of aging. Thus, we hypothesized that maternal supplement of omega-3 polyunsaturated fatty acids (ω-3 PUFA) may be associated with neuroprotection mechanisms in a self-sustaining cycle of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)-model of PD. To test this hypothesis, behavioral and neurochemical assay were performed in prenatally LPS-exposed offspring at postnatal day 21. To further determine whether prenatal LPS exposure and maternal ω-3 PUFAs supplementation had persisting effects, brain injury was induced on PN 90 rats, following bilateral intranigral LPS injection. Pre- and postnatal inflammation damage not only affected dopaminergic neurons directly, but it also modified critical features, such as activated microglia and astrocyte cells, disrupting the support provided by the microenvironment. Unexpectedly, our results failed to show any involvement of caspase-dependent and independent apoptosis pathway in neuronal death mechanisms. On the other hand, learning and memory deficits detected with a second toxic exposure were significantly attenuated in maternal ω-3 PUFAs supplementation group. In addition, ω-3 PUFAs promote beneficial effect on synaptic function, maintaining the neurochemical integrity in remaining neurons, without necessarily protect them from neuronal death. Thus, our results suggest that ω-3 PUFAs affect the functional ability of the central nervous system in a complex way in a multiple inflammation-induced neurotoxicity animal model of PD and they disclose new ways of understanding how these fatty acids control responses of the brain to different challenges.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Enfermedad de Parkinson/dietoterapia , Enfermedad de Parkinson/metabolismo , Fenómenos Fisiologicos de la Nutrición Prenatal/fisiología , Animales , Animales Recién Nacidos , Suplementos Dietéticos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Inflamación/dietoterapia , Inflamación/metabolismo , Inflamación/patología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Enfermedad de Parkinson/patología , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Wistar
4.
Reprod Fertil Dev ; 26(6): 787-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23743013

RESUMEN

This study investigated the pre- and postnatal effects of protein restriction (8% vs 20% crude protein) on different parameters of spermatogenesis in adult rat offspring. Body and testis weights as well as the seminiferous tubular diameter were reduced in those animals that received the protein-restricted diet after weaning, although these parameters recovered when a 20% protein diet was offered subsequently. The numbers of spermatogonia, spermatocytes, spermatids and Leydig cells were reduced in undernourished animals, whilst the Sertoli cell number did not change. Prenatal programming effect was observed only in the spermatogonial or proliferative phase of spermatogenesis. However, the intake of the normal protein diet after weaning brought many of the testicular parameters evaluated back to normal in 70-day-old rats. A significant reduction of the meiotic index, Sertoli cell supporting capacity and spermatogenic efficiency was observed in animals subjected to protein undernutrition throughout their lives. The data presented show that protein restriction impairs the normal development of the testis in different ways, depending on the period during which the restriction was imposed, and the negative effects on spermatogenesis are more severe when undernutrition occurs from conception to adulthood; however, the return to a normal protein diet after weaning recovers the spermatogenic process.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta/farmacología , Fenómenos Fisiologicos de la Nutrición Prenatal , Espermatogénesis/efectos de los fármacos , Animales , Peso al Nacer/efectos de los fármacos , Femenino , Masculino , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal/efectos de los fármacos , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Destete
5.
Nutrition ; 24(3): 270-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18312789

RESUMEN

OBJECTIVE: The main goal of the present study was to investigate the effects of a low-protein diet during gestation on the biomechanical properties of skeletal muscle of offspring rats. METHODS: Male Wistar rats were divided into two groups according to their mothers' diet during pregnancy: a control group (mothers fed with 17% protein) and a low-protein group (mothers fed with 7.8% protein; UN). At birth, all mothers received a standardized meal ad libitum. When the rats were 25 and 90 d old, the soleus and extensor digitorum longus (EDL) muscles were removed from the pups. An analysis of the contractile and series elastic component properties was carried out on both muscles. Histochemical analysis was likewise performed. RESULTS: Group UN presented muscle wasting and diminution of maximum twitch and tetanic tension on the muscle at 25 and 90 d of life. There was an increase in maximal shortening velocity in the soleus and EDL muscles at 25 and 90 d in group UN. Series elastic component stiffness was increased in the soleus muscle, although a diminution of series elastic component stiffness was observed in the EDL at 25 d. With regard to the analysis of the muscle fiber proportions at 25 and 90 d, the UN group presented an increase in the IIa fibers in the soleus, whereas there was an increase in the IIb fibers and a diminution in the IIa fibers in the EDL. CONCLUSION: Low-protein intake during a critical period of development induces changes in the structure and function of skeletal muscle. Such changes may compromise an animal's posture and locomotion.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta/farmacología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Fenómenos Fisiologicos de la Nutrición Prenatal/fisiología , Animales , Estimulación Eléctrica , Femenino , Masculino , Desnutrición/fisiopatología , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Fenómenos Fisiologicos de la Nutrición Prenatal/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA