Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Nutr Biochem ; 108: 109087, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35691593

RESUMEN

Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low, or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1, and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP, and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.


Asunto(s)
Quilomicrones , Enterocitos , Proteínas de Unión al GTP Monoméricas , Fenilbutiratos , Proteína Reguladora Asociada a mTOR , Ácido Tióctico , Apolipoproteínas B/metabolismo , Células CACO-2 , Quilomicrones/metabolismo , Coenzima A Ligasas/metabolismo , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Fenilbutiratos/metabolismo , Fenilbutiratos/farmacología , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacología
2.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064074

RESUMEN

The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.


Asunto(s)
Fenilbutiratos/farmacología , Renina/metabolismo , Canales de Translocación SEC/genética , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Enfermedades Renales/fisiopatología , Chaperonas Moleculares/metabolismo , Mutación Missense , Fenilbutiratos/metabolismo , Enfermedades Renales Poliquísticas , Transporte de Proteínas/genética , Renina/genética , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281222

RESUMEN

There are two types of cytochrome P450 enzymes in nature, namely, the monooxygenases and the peroxygenases. Both enzyme classes participate in substrate biodegradation or biosynthesis reactions in nature, but the P450 monooxygenases use dioxygen, while the peroxygenases take H2O2 in their catalytic cycle instead. By contrast to the P450 monooxygenases, the P450 peroxygenases do not require an external redox partner to deliver electrons during the catalytic cycle, and also no external proton source is needed. Therefore, they are fully self-sufficient, which affords them opportunities in biotechnological applications. One specific P450 peroxygenase, namely, P450 OleTJE, reacts with long-chain linear fatty acids through oxidative decarboxylation to form hydrocarbons and, as such, has been implicated as a suitable source for the biosynthesis of biofuels. Unfortunately, the reactions were shown to produce a considerable amount of side products originating from Cα and Cß hydroxylation and desaturation. These product distributions were found to be strongly dependent on whether the substrate had substituents on the Cα and/or Cß atoms. To understand the bifurcation pathways of substrate activation by P450 OleTJE leading to decarboxylation, Cα hydroxylation, Cß hydroxylation and Cα-Cß desaturation, we performed a computational study using 3-phenylpropionate and 2-phenylbutyrate as substrates. We set up large cluster models containing the heme, the substrate and the key features of the substrate binding pocket and calculated (using density functional theory) the pathways leading to the four possible products. This work predicts that the two substrates will react with different reaction rates due to accessibility differences of the substrates to the active oxidant, and, as a consequence, these two substrates will also generate different products. This work explains how the substrate binding pocket of P450 OleTJE guides a reaction to a chemoselectivity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Modelos Químicos , Fenilbutiratos/metabolismo , Fenilpropionatos/metabolismo
4.
Exp Physiol ; 106(3): 585-592, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369803

RESUMEN

NEW FINDINGS: What is the central question of this study? The compound sodium phenylbutyrate (PB) has been shown to promote branched-chain amino acid (BCAA) catabolism, and as such has been proposed as a treatment for disorders with enhanced BCAA levels: does PB induce muscle protein catabolism by forcing BCAA degradation away from muscle protein synthesis and mechanistic target of rapamycin (mTOR) inhibition? What is the main finding and its importance? Accelerated BCAA catabolism using PB resulted in adverse effects related to mTOR signalling and muscle protein metabolism in skeletal muscle cells, which may limit its application in conditions where muscle wasting is a risk. ABSTRACT: The compound sodium phenylbutyrate (PB) has been used for reducing ammonia in patients with urea cycle disorders and proposed as a treatment for disorders with enhanced branched-chain amino acid (BCAA) levels, due to its effects on promoting BCAA catabolism. In skeletal muscle cells, we hypothesised that PB would induce muscle protein catabolism due to forcing BCAA degradation away from muscle protein synthesis and downregulating mechanistic target of rapamycin (mTOR). PB reduced medium BCAA and branched-chain keto acid (BCKA) concentrations, while total cell protein (-21%; P < 0.001 vs. control) and muscle protein synthesis (-25%; P < 0.001 vs. control; assessed by measurement of puromycin incorporation into polypeptides) were decreased with PB. The regulator of anabolic pathways mTOR and its downstream components were impaired with PB treatment. The present results indicate that accelerated BCAA catabolism using PB resulted in adverse effects related to mTOR signalling and muscle protein metabolism, which may limit its application in settings where muscle wasting is a risk.


Asunto(s)
Músculo Esquelético , Fenilbutiratos , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Línea Celular , Ratones , Músculo Esquelético/metabolismo , Oxidorreductasas/metabolismo , Fenilbutiratos/metabolismo , Fenilbutiratos/farmacología
5.
Acta Neurobiol Exp (Wars) ; 80(3): 305-321, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32990288

RESUMEN

In humans, pyruvate dehydrogenase complex (PDC) deficiency impairs brain energy metabolism by reducing the availability of the functional acetyl­CoA pool. This "hypometabolic defect" results in congenital lactic acidosis and abnormalities of brain morphology and function, ranging from mild ataxia to profound psychomotor retardation. Our previous study showed reduction in total cell number and dendritic arbors in the cerebellar Purkinje cells in systemic PDC­deficient mice. Phenylbutyrate has been shown to increase PDC activity in cultured fibroblasts from PDC­deficient patients. Hence, we investigated the effects of postnatal (days 2­35) phenylbutyrate administration on the cerebellar Purkinje cell population in PDC­deficient female mice. Histological analyses of different regions of cerebellar cortex from the brain­specific PDC­deficient saline­injected mice revealed statistically significant reduction in the Purkinje cell density and increased cell size of the individual Purkinje cell soma compared to control PDC­normal, saline­injected group. Administration of phenylbutyrate to control mice did not cause significant changes in the Purkinje cell density and cell size in the studied regions. In contrast, administration of phenylbutyrate variably lessened the ill effects of PDC deficiency on Purkinje cell populations in different areas of the cerebellum. Our results lend further support for the possible use of phenylbutyrate as a potential treatment for PDC deficiency.


Asunto(s)
Encéfalo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenilbutiratos/farmacología , Células de Purkinje/efectos de los fármacos , Animales , Corteza Cerebelosa/efectos de los fármacos , Cerebelo/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Transgénicos , Fenilbutiratos/metabolismo , Células de Purkinje/citología
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165899, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32698045

RESUMEN

Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/metabolismo , Envejecimiento/fisiología , Animales , Complejo I de Transporte de Electrón/metabolismo , Estrés del Retículo Endoplásmico/genética , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación Oxidativa , Fenilbutiratos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Molecules ; 25(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354057

RESUMEN

The use of baker's yeast to reduce ethyl 2-oxo-4-phenylbutyrate (EOPB) in conventional biphasic systems is hindered by low productivities due to mass transfer resistance between the biocatalyst and the substrate partitioned into two different phases. To overcome the limitation, a new reaction-separation coupling process (RSCP) was configured in this study, based on the novel thermosensitive ionic liquids (ILs) with polyoxyethylene-tail. The solubility of ILs in common solvents was investigated to configure the unique thermosensitive ionic liquids-solvent biphasic system (TIBS) in which the reduction was performed. [(CH3)2N(C2H5)(CH2CH2O)2H][PF6] (c2) in 1,2-dimethoxyethane possesses the thermosensitive function of homogeneous at lower temperatures and phase separating at higher temperatures. The phase transformation temperature (PTT) of the mixed system of c2/1,2-dimethoxyethane (v/v, 5:18) was about 33 °C. The bioreaction takes place in a "homogeneous" liquid phase at 30 °C. At the end of each reduction run, the system temperature is increased upon to the PTT, while c2 is separated from 1,2-dimethoxyethane with turning the system into two phases. The enantiomeric excesses (e.e.) of ethyl (R)-2-hydroxy-4-phenylbutyrate ((R)-EHPB) increased about 25~30% and the yield of ethyl-2-hydroxy-4-phenylbutyrate (EHPB) increased 35% in TIBS, compared with the reduction in 1,2-dimethoxyethane. It is expected that the TIBS established in this study could provide many future opportunities in the biocatalysis.


Asunto(s)
Líquidos Iónicos , Fenilbutiratos/metabolismo , Polietilenglicoles/química , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Catálisis , Cloruros/química , Tecnología Química Verde , Solubilidad , Solventes , Estereoisomerismo , Temperatura , Agua
8.
Chembiochem ; 21(18): 2680-2688, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32324965

RESUMEN

Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDHM0 ) in the presence of large amounts of 1-phenylethanol by directed evolution. Among the resulting mutants, BmGDHM6 (Q252L/E170K/S100P/K166R/V72I/K137R) exhibited a 9.2-fold increase in tolerance against 10 % (v/v) 1-phenylethanol. Moreover, BmGDHM6 was also more stable than BmGDHM0 when exposed to hydrophobic and enzyme-inactivating compounds such as acetophenone, ethyl 2-oxo-4-phenylbutyrate, and ethyl (R)-2-hydroxy-4-phenylbutyrate. Coupled with a Candida glabrata carbonyl reductase, BmGDHM6 was successfully used for the asymmetric reduction of deactivating ethyl 2-oxo-4-phenylbutyrate with total turnover number of 1800 for the nicotinamide cofactor, thus making it attractive for commercial application. Overall, the evolution of chemically robust GDH facilitates its wider use as a general tool for NAD(P)H regeneration in biocatalysis.


Asunto(s)
Glucosa 1-Deshidrogenasa/metabolismo , Niacinamida/metabolismo , Bacillus megaterium/enzimología , Alcoholes Bencílicos/química , Alcoholes Bencílicos/metabolismo , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/genética , Estructura Molecular , Mutación , Niacinamida/química , Oxidación-Reducción , Fenilbutiratos/química , Fenilbutiratos/metabolismo
9.
Biochemistry ; 59(13): 1367-1377, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32207963

RESUMEN

More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Creatina/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Encefalopatías Metabólicas Innatas/genética , Creatina/genética , Creatina/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Proteínas del Tejido Nervioso/química , Fenilbutiratos/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo
10.
Brain Dev ; 42(2): 231-235, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31604595

RESUMEN

An adult female patient was diagnosed with arginase 1 deficiency (ARG1-D) at 4 years of age, and had been managed with protein restriction combined with sodium benzoate therapy. Though the treatment was successful in ameliorating hyperammonemia, hyperargininemia persisted. After being under control with a strict restriction of dietary protein, severe fall of serum albumin levels appeared and her condition became strikingly worsened. However, after sodium phenylbutyrate (NaPB) therapy was initiated, the clinical condition and metabolic stability was greatly improved. Current management of ARG1-D is aimed at lowering plasma arginine levels. The nitrogen scavengers, such as NaPB can excrete the waste nitrogen not through the urea cycle but via the alternative pathway. The removal of nitrogen via alternative pathway lowers the flux of arginine in the urea cycle. Thereby, the clinical complications due to insufficient amount of protein intake can be prevented. Thus, NaPB therapy can be expected as a useful therapeutic option, particularly in patients with ARG1-D.


Asunto(s)
Arginasa/genética , Hiperargininemia/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Adulto , Arginasa/metabolismo , Arginina/metabolismo , Femenino , Humanos , Hiperamonemia/sangre , Hiperargininemia/sangre , Hiperargininemia/genética , Fenilbutiratos/metabolismo
11.
Biomater Sci ; 7(11): 4624-4635, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451819

RESUMEN

4-Phenylbutyric acid (PBA)-installed hyaluronic acid (HA)-based nanoparticles (NPs) were developed for amplifying the anticancer potential of curcumin (CUR) for lung cancer therapy. PBA was introduced to the HA backbone as a hydrophobic segment of a nanoassembled structure and as a histone deacetylase (HDAC) inhibitor for cancer therapy. PBA was released from the HA-PBA conjugate (HAPBA) via an esterase-responsive cleavage of ester bonds in cancer cells and may affect the dissociation of NP structure. CUR-entrapped HAPBA-based NPs, with 265 nm hydrodynamic size, unimodal size distribution, negative zeta potential, and sustained drug release, were fabricated. Co-treatment of A549 cells by PBA and CUR elevated the antiproliferation efficiency compared with CUR-treatment. CUR-loaded HAPBA NPs also exhibited a significantly lower IC50 value compared with the CUR and HAPBA10 + CUR groups (p < 0.05). Cy5.5-labeled HAPBA NPs containing CUR group displayed higher accumulation in tumor tissue and less distribution in liver and spleen after intravenous injection compared with the Cy5.5-injected group in A549 tumor-bearing mouse model. Multiple dosing of CUR-loaded HAPBA NPs in A549 tumor-bearing mouse model exhibited efficient tumor growth suppression and apoptosis-inducing effects. CD44 receptor targeting and HDAC inhibiting HAPBA NPs can be used to boost the anticancer potentials of drug cargo for the therapy of CD44 receptor-expressed cancers.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Esterasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácido Hialurónico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Fenilbutiratos/farmacología , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Apoptosis/efectos de los fármacos , Femenino , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fenilbutiratos/química , Fenilbutiratos/metabolismo
12.
Comput Biol Chem ; 80: 128-137, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30952039

RESUMEN

Phenylbutyrate (PB), a small aromatic fatty acid, has been known as an interesting compound with the ability of anti-proliferation and cell growth inhibition in cancer cells. In the present study, a series of PB derivatives were synthesized by Passerini multicomponent reaction and their cytotoxic activities against various human cancer cell lines including A549 (non-small cell lung cancer), MDA-MB-231 (breast cancer), and SW1116 (colon cancer) were evaluated. The results revealed that B9, displayed significantly higher in vitro cytotoxicity with IC50 of 6.65, 8.44 and 24.71 µM, against A549, MDA-MB-231 and, SW1116, respectively, in comparison to PB. The effects of these compounds on the proliferation of MCF-10A as non-tumoral breast cell line, showed good selectivity of the compounds between tumorigenic and non-tumorigenic cell lines. Moreover, B9 has indicated apoptosis-inducing activities to MDA-MB-231 cancer cell line in a dose-dependent manner. The molecular docking studies of the synthesized compounds on pyruvate dehydrogenase kinase 2 (PDK2; PDB ID: 2BU8) and histone deacetylase complex (HDAC; PDB ID: 1C3R), as the main targets of PB were applied to predict the binding sites and binding orientation of the compounds to these targets.


Asunto(s)
Antineoplásicos/farmacología , Fenilbutiratos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fenilbutiratos/síntesis química , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Relación Estructura-Actividad
13.
Pharmacol Res ; 144: 116-131, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30954630

RESUMEN

In the past two decades, significant advances have been made in the etiology of lipid disorders. Concomitantly, the discovery of liporegulatory functions of certain short-chain fatty acids has generated interest in their clinical applications. In particular, butyric acid (BA) and its derivative, 4-phenylbutyric acid (PBA), which afford health benefits against lipid disorders while being generally well tolerated by animals and humans have been assessed clinically. This review examines the evidence from cell, animal and human studies pertaining to the lipid-regulating effects of BA and PBA, their molecular mechanisms and therapeutic potential. Collectively, the evidence supports the view that intakes of BA and PBA benefit lipid homeostasis across biological systems. We reviewed the evidence that BA and PBA downregulate de novo lipogenesis, ameliorate lipotoxicity, slow down atherosclerosis progression, and stimulate fatty acid ß-oxidation. Central to their mode of action, BA appears to function as a histone deacetylase (HDAC) inhibitor while PBA acts as a chemical chaperone and/or a HDAC inhibitor. Areas of further inquiry include the effects of BA and PBA on adipogenesis, lipolysis and apolipoprotein metabolism.


Asunto(s)
Ácido Butírico/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Fenilbutiratos/farmacología , Adipogénesis/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Ácido Butírico/metabolismo , Ácido Butírico/uso terapéutico , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Fenilbutiratos/metabolismo , Fenilbutiratos/uso terapéutico
14.
Psychoneuroendocrinology ; 104: 286-299, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30927713

RESUMEN

Antipsychotics are the most important treatment for schizophrenia. However, antipsychotics, particularly olanzapine and clozapine, are associated with severe weight gain/obesity side-effects. Although numerous studies have been carried out to identify the exact mechanisms of antipsychotic-induced weight gain, it is still important to consider other pathways. Endoplasmic reticulum (ER) stress signaling and its associated inflammation pathway is one of the most important pathways involved in regulation of energy balance. In the present study, we examined the role of hypothalamic protein kinase R like endoplasmic reticulum kinase- eukaryotic initiation factor 2α (PERK-eIF2α) signaling and the inflammatory IkappaB kinase ß- nuclear factor kappa B (IKKß-NFκB) signaling pathway in olanzapine-induced weight gain in female rats. In this study, we found that olanzapine significantly activated PERK-eIF2α and IKKß-NFκB signaling in SH-SY5Y cells in a dose-dependent manner. Olanzapine treatment for 8 days in rats was associated with activated PERK-eIF2α signaling and IKKß-NFκB signaling in the hypothalamus, accompanied by increased food intake and weight gain. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate (4-PBA), decreased olanzapine-induced food intake and weight gain in a dose- and time-dependent manner. Moreover, 4-PBA dose-dependently inhibited olanzapine-induced activated PERK-eIF2α and IKKß-NFκB signaling in the hypothalamus. These results suggested that hypothalamic ER stress may play an important role in antipsychotic-induced weight gain.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Fenilbutiratos/farmacología , Animales , Antipsicóticos/farmacología , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Olanzapina/farmacología , Fenilbutiratos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , eIF-2 Quinasa/metabolismo
15.
Nat Chem Biol ; 15(1): 18-26, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510193

RESUMEN

Prostaglandin E receptor EP4, a G-protein-coupled receptor, is involved in disorders such as cancer and autoimmune disease. Here, we report the crystal structure of human EP4 in complex with its antagonist ONO-AE3-208 and an inhibitory antibody at 3.2 Å resolution. The structure reveals that the extracellular surface is occluded by the extracellular loops and that the antagonist lies at the interface with the lipid bilayer, proximal to the highly conserved Arg316 residue in the seventh transmembrane domain. Functional and docking studies demonstrate that the natural agonist PGE2 binds in a similar manner. This structural information also provides insight into the ligand entry pathway from the membrane bilayer to the EP4 binding pocket. Furthermore, the structure reveals that the antibody allosterically affects the ligand binding of EP4. These results should facilitate the design of new therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.


Asunto(s)
Subtipo EP4 de Receptores de Prostaglandina E/química , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Regulación Alostérica , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Sitios de Unión , Caprilatos/química , Caprilatos/metabolismo , Cristalografía por Rayos X , Epoprostenol/análogos & derivados , Epoprostenol/química , Epoprostenol/metabolismo , Humanos , Ligandos , Membrana Dobles de Lípidos , Simulación del Acoplamiento Molecular , Naftalenos/química , Naftalenos/metabolismo , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP4 de Receptores de Prostaglandina E/genética , Spodoptera/genética
16.
Bioprocess Biosyst Eng ; 41(9): 1383-1390, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948210

RESUMEN

(R)-2-hydroxy-4-phenylbutyric acid (R-HPBA) is a valuable intermediate for the synthesis of angiotensin-converting enzyme inhibitors. The asymmetric reduction of 2-oxo-4-phenylbutyric acid (OPBA) by oxidoreductases is an efficient approach for its synthesis. Here, we report a novel biocatalytic approach for asymmetric synthesis of R-HPBA using recombinant Pichia pastoris expressing the Tyr52Leu variant of D-lactate dehydrogenase (D-LDH) from Lactobacillus plantarum. The recombinant yeast cells showed impressive catalytic activity at a high concentration of NaOPBA (380 mM, 76 g/L) and achieved full conversion starting with 40 g/L NaOPBA or even at higher concentration. Under optimized reaction conditions (pH 7.5, 37 °C, and 2% glucose), a full conversion with > 95% reaction yield and ~ 100% product enantiomeric excess (ee) was achieved for the preparation of R-HPBA on a 2-g scale. The findings of this study promote both the biotransformation of R-HPBA and an extension of the application of recombinant yeast as biocatalysts.


Asunto(s)
Proteínas Bacterianas , L-Lactato Deshidrogenasa , Lactobacillus plantarum/genética , Microorganismos Modificados Genéticamente , Fenilbutiratos/metabolismo , Pichia , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , L-Lactato Deshidrogenasa/biosíntesis , L-Lactato Deshidrogenasa/genética , Lactobacillus plantarum/enzimología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Pichia/genética , Pichia/metabolismo
17.
Biol Pharm Bull ; 41(6): 961-966, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29526885

RESUMEN

Sodium 4-phenylbutyrate (PBA), which exerts a wide range of anti-inflammatory effects, is rapidly cleared from the body (approximately 98%) by urinary excretion by 24 h after oral treatment in humans. PBA was almost entirely excreted to urine as phenylacetyl glutamine (PAGln). However, no data describe the potential anti-inflammatory effects of PAGln. The purpose of this study was to evaluate the anti-inflammatory effects of PAGln on mouse spleen cells and peritoneal cavity cells, and explore the potential mechanism underlying this effect. PAGln was added to mouse spleen cell cultures stimulated by concanavalin A, or mouse peritoneal cavity cell cultures stimulated by lipopolysaccharide. After 72 h of culture, levels of inflammatory cytokines in culture supernatants were measured using a sandwich enzyme-linked immunosorbent assay system, and levels of inflammatory proteins were assessed by Western blotting. PAGln significantly inhibited inflammatory cytokine (interferon-γ, interleukin-6, and tumor necrosis factor-α) production, decrease of cell number in the spleen cell, and suppressed the expression of inflammatory proteins (nuclear factor κB, and inducible nitric oxide synthase). These results suggest that PAGln possesses anti-inflammatory activity via inhibition of T cell activation and Toll-like receptor 4 signaling. This study of the anti-inflammatory mechanism of PAGln provides useful information about its potential for therapeutic applications.


Asunto(s)
Antiinflamatorios/farmacología , Glutamina/análogos & derivados , Animales , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Concanavalina A/farmacología , Glutamina/farmacología , Interferón gamma/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos ICR , Cavidad Peritoneal/citología , Fenilbutiratos/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/citología , Linfocitos T/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Fish Shellfish Immunol ; 72: 247-258, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29108970

RESUMEN

Maintaining fish health is one of the most important aims in aquaculture. Prevention of fish diseases therefore is crucial and can be achieved by various different strategies, including most often a combination of different methods such as optimal feed and fish density, as well as strengthening the immune system. Understanding the fish innate immune system and developing methods to activate it, in an effort to prevent infections in the first place, has been a goal in recent years. In this study we choose different inducers of the innate immune system and examined their effects in vitro on the salmon cell line CHSE-214. We found that the butyrate derivatives 4-phenyl butyrate (PBA) and ß-hydroxy-ß-methyl butyrate (HMB) induce the expression of various innate immune genes differentially over 24-72 h. Similarly, lipids generated from fish oils were found to have an effect on the expression of the antimicrobial peptides cathelicidin and hepcidin, as well as iNOS and the viral receptor RIG-1. Interestingly we found that vitamin D3, similar as in mammals, was able to increase cathelicidin expression in fish cells. The observed induction of these different innate immune factors correlated with antibacterial activity against Aeromonas salmonicida and antiviral activity against IPNV and ISAV in vitro. To relate this data to the in vivo situation we examined cathelicidin expression in juvenile salmon and found that salmon families vary greatly in their basal cathelicidin levels. Examining cathelicidin levels in families known to be resistant to IPNV showed that these QTL-families had lower basal levels of cathelicidin in gills, than non QTL-families. Feeding fish with HMB caused a robust increase in cathelicidin expression in gills, but not skin and this was independent of the fish being resistant to IPNV. These findings support the use of fish cell lines as a tool to develop new inducers of the fish innate immune system, but also highlight the importance of the tissue studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata , Salmo salar/genética , Salmo salar/inmunología , Aeromonas salmonicida/fisiología , Animales , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/veterinaria , Línea Celular , Colecalciferol/administración & dosificación , Colecalciferol/metabolismo , Forunculosis/inmunología , Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Virus de la Necrosis Pancreática Infecciosa/fisiología , Lípidos/administración & dosificación , Fenilbutiratos/administración & dosificación , Fenilbutiratos/metabolismo , Valeratos/administración & dosificación , Valeratos/metabolismo
19.
J Inorg Biochem ; 177: 1-7, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28918353

RESUMEN

Five new platinum(IV) derivatives of carboplatin each incorporating the histone deacetylase inhibitor 4-phenylbutyrate in axial position were synthesized and characterized by 1H and 195Pt NMR spectroscopy, electrospray ionization mass spectrometry and elemental analysis, namely cis,trans-[Pt(CBDCA)(NH3)2(PBA)(OH)] (1), cis,trans-[Pt(CBDCA)(NH3)2(PBA)2] (2), cis,trans-[Pt(CBDCA)(NH3)2(PBA)(bz)] (3), cis,trans-[Pt(CBDCA)(NH3)2(PBA)(suc)] (4) and cis,trans-[Pt(CBDCA)(NH3)2)(PBA)(ac)] (5) (PBA=4-phenylbutyrate, CBDCA=1,1-cyclobutane dicarboxylate, bz=benzoate, suc=succinate and ac=acetate). The reduction behavior in the presence of ascorbic acid was studied by high performance liquid chromatography. The cytotoxicity against a panel of human tumor cell lines, histone deacetylase (HDAC) inhibitory activity, cellular accumulation and the ability to induce apoptosis were evaluated. The most effective complex, compound 3, was found to be up to ten times more effective than carboplatin and to decrease cellular basal HDAC activity by approximately 18% in A431 human cervical cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Carboplatino/análogos & derivados , Carboplatino/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Fenilbutiratos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Carboplatino/síntesis química , Carboplatino/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/metabolismo , Humanos , Concentración 50 Inhibidora , Fenilbutiratos/síntesis química , Fenilbutiratos/metabolismo
20.
Mol Genet Metab ; 122(3): 39-45, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28888854

RESUMEN

Urea cycle disorders (UCDs) are genetic conditions characterized by nitrogen accumulation in the form of ammonia and caused by defects in the enzymes required to convert ammonia to urea for excretion. UCDs include a spectrum of enzyme deficiencies, namely n-acetylglutamate synthase deficiency (NAGS), carbamoyl phosphate synthetase I deficiency (CPS1), ornithine transcarbamylase deficiency (OTC), argininosuccinate lyase deficiency (ASL), citrullinemia type I (ASS1), and argininemia (ARG). Currently, sodium phenylbutyrate and glycerol phenylbutyrate are primary medications used to treat patients with UCDs, and long-term monitoring of these compounds is critical for preventing drug toxic levels. Therefore, a fast and simple ultra-performance liquid chromatography (UPLC-MS/MS) method was developed and validated for quantification of phenylbutyrate (PB), phenylacetate (PA), and phenylacetylglutamine (PAG) in plasma and urine. The separation of all three analytes was achieved in 2min, and the limits of detection were <0.04µg/ml. Intra-precision and inter-precision were <8.5% and 4% at two quality control concentrations, respectively. Average recoveries for all compounds ranged from 100% to 106%. With the developed assay, a strong correlation between PA and the PA/PAG ratio and an inverse correlation between PA/PAG ratio and plasma glutamine were observed in 35 patients with confirmed UCDs. Moreover, all individuals with a ratio ≥0.6 had plasma glutamine levels<1000µmol/l. Our data suggest that a PA/PAG ratio in the range of 0.6-1.5 will result in a plasma glutamine level<1000µmol/l without reaching toxic levels of PA.


Asunto(s)
Cromatografía Liquida/métodos , Glutamina/análogos & derivados , Glutamina/sangre , Fenilacetatos/metabolismo , Fenilbutiratos/sangre , Fenilbutiratos/metabolismo , Amoníaco/metabolismo , Aciduria Argininosuccínica/fisiopatología , Femenino , Glutamina/metabolismo , Glutamina/orina , Glicerol/análogos & derivados , Glicerol/uso terapéutico , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/fisiopatología , Fenilacetatos/sangre , Fenilacetatos/orina , Fenilbutiratos/uso terapéutico , Fenilbutiratos/orina , Espectrometría de Masas en Tándem , Urea/metabolismo , Trastornos Innatos del Ciclo de la Urea/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...