Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.961
Filtrar
1.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38700894

RESUMEN

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Asunto(s)
Amidas , Antioxidantes , Digestión , Inhibidores de Glicósido Hidrolasas , Extractos Vegetales , Zanthoxylum , alfa-Glucosidasas , Zanthoxylum/química , Zanthoxylum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , alfa-Glucosidasas/genética , Humanos , Amidas/química , Amidas/metabolismo , Amidas/farmacología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/metabolismo , Modelos Biológicos , Fenol/metabolismo , Fenol/química
2.
Chemosphere ; 358: 142151, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679169

RESUMEN

Herein, MXene-based composite aerogel (MXene-Fe2+ aerogel) are constructed by a one-step freeze-drying method, using Ti3C2Tx MXene layers as substrate material and ferrous ion (Fe2+) as crosslinking agent. With the aid of the Fe2+ induced Fenton reaction, the synthesized aerogels are used as the particle electrodes to remove phenol from wastewater with three-dimensional electrode technology. Combined with the dual roles of Fe2+ and the highly conductive MXene, the obtained particle electrode possesses extremely effective phenol degradation. The effects of experiment parameters such as Fe2+ to MXene ratio, particle electrode dosage, applied voltage, and initial pH of solution on the removal of phenol are discussed. At pH = 2.5, phenol with 50 mg/L of initial concentration can be completely removed within 50 min at 10 V with the particle electrode dosage of 0.56 g/L. Finally, the mechanism of degradation is explored. This work provides an effective way for phenol degradation by MXene-based aerogel, which has great potential for the degradation of other organic pollutants in wastewater.


Asunto(s)
Geles , Fenol , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Fenol/química , Geles/química , Eliminación de Residuos Líquidos/métodos , Hierro/química , Electrodos , Concentración de Iones de Hidrógeno , Iones/química , Compuestos Ferrosos/química , Titanio/química
3.
Environ Sci Pollut Res Int ; 31(18): 26916-26927, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456980

RESUMEN

Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.


Asunto(s)
Cobre , Oxidación-Reducción , Peróxidos , Fenol , Catálisis , Cobre/química , Peróxidos/química , Fenol/química , Óxido de Aluminio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos
4.
J Environ Sci (China) ; 142: 279-289, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527893

RESUMEN

Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy (WtE) incineration processes. This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals (EPFRs) from phenolic compounds based on the first-principles calculations. Two oxygen-deficient conditions were considered: oxygen vacancies at the top surface and on the subsurface. Our simulations indicate that the adsorption strength of phenol on the α-Fe2O3(0001) surface is enhanced by the presence of oxygen vacancies. However, the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule, particularly for the surface with a defective point at the top layer. Thermo-kinetic parameters were established over a temperature range of 300-1000 K, and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface. The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeIII to FeII, which lower the oxidizing ability of surface reaction sites. The findings of this study provide us a promising approach to regulate the formation of EPFRs.


Asunto(s)
Compuestos Férricos , Oxígeno , Compuestos Férricos/química , Radicales Libres/química , Fenoles , Fenol/química
5.
Macromol Rapid Commun ; 45(9): e2300663, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375776

RESUMEN

As the second most abundant biopolymer, lignin remains underutilized in various industrial applications. Various forms of lignin generated from different methods affect its physical and chemical properties to a certain extent. To promote the broader commercial utilization of currently available industrial lignins, lignin sulfonate (SL), kraft lignin (KL), and organosolv lignin (OL) are utilized to partially replace phenol in the synthesis of phenol formaldehyde (PF) adhesives. The impact of lignin production process on the effectiveness of lignin-based phenolic (LPF) adhesives is examined based on the structural analysis of the selected industrial lignin. The results show that OL has more phenolic hydroxyl groups, lower molecular weight, and greater number of reactive sites than the other two types of lignins. The maximum replacement rate of phenol by OL reaches 70% w/w, resulting in organosolv lignin phenolic (OLPF) adhesives with a viscosity of 960 mPa·s, a minimal free formaldehyde content of 0.157%, and a shear strength of 1.84 MPa. It exhibits better performance compared with the other two types of lignin-based adhesives and meets the requirements of national standards.


Asunto(s)
Adhesivos , Formaldehído , Lignina , Fenol , Fenoles , Lignina/química , Formaldehído/química , Adhesivos/química , Fenoles/química , Fenol/química , Estructura Molecular , Peso Molecular , Viscosidad
6.
Chemosphere ; 352: 141307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307338

RESUMEN

The present study compares the effect of using different solvents on the electrochemical properties of the reduced TiO2 nanotubes (TiO2-rNTs) layered Ti/TiO2-rNTs/SnO2-Sb/PbO2 anodes. The electrodes are prepared using three different solvent-based precursors: (i) isopropanol, (ii) ethylene glycol and citric acid (Pechini method), and (iii) 2-hydroxyethylammonium acetate (2HEAA) ionic liquid (IL) via the thermal decomposition route. The decomposition mechanism of precursor solutions was explored using the thermogravimetric (TGA) analysis. Further, the physicochemical properties of the electrodes are examined using Field emission Scanning Electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron emission spectroscopy (XPS). The results revealed that solvents with higher viscosity and slower decomposition rates support better film uniformity and higher stability of the electrode. The TiO2 -rNTs bottom layer and PbO2 top layer helped obtain higher film stability, increased working potential window (2.2 V vs. SHE) of the electrode, and the repeatability of the results. The performance of different electrodes based on the precursor solution is found as IL â‰« Pechini > Isopropanol. 4-chlorophenol (4-CP) is used as a model pollutant to test the performance of IL-Ti/TiO2-rNTs/SnO2-Sb/PbO2 anode in an anodic oxidation (AO) coupled electro-Fenton (EF) treatment. Further, the reliability of the electrode is evaluated by mineralizing other persistent organic pollutants (POPs) like tetracyclin, phenol, 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). Under the optimized conditions, the proposed system was able to mineralize the tetracyclin, phenol, 2-CP, 2,4-DCP, and 4-CP up to 78.91, 82.07, 74.96, 78.78, and 69.3 %, respectively. Moreover, the degradation mechanism of chlorophenols is proposed.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Óxidos/química , Contaminantes Orgánicos Persistentes , 2-Propanol , Reproducibilidad de los Resultados , Titanio/química , Oxidación-Reducción , Fenoles , Fenol/química , Electrodos , Solventes , Contaminantes Químicos del Agua/química
7.
Water Res ; 251: 121106, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38183841

RESUMEN

The selective transformation of organics from wastewater to value-added chemicals is considered an upcycling process beneficial for carbon neutrality. Herein, we present an innovative electrocatalytic oxidation (ECO) system aimed at achieving the selective conversion of phenols in wastewater to para-benzoquinone (p-BQ), a valuable chemical widely utilized in the manufacturing and chemical industries. Notably, 96.4% of phenol abatement and 78.9% of p-BQ yield are synchronously obtained over a preferred carbon cloth-supported ruthenium nanoparticles (Ru/C) anode. Such unprecedented results stem from the weak Ru-O bond between the Ru active sites and generated p-BQ, which facilitates the desorption of p-BQ from the anode surface. This property not only prevents the excessive oxidation of the generated p-BQ but also reinstates the Ru active sites essential for the rapid ECO of phenol. Furthermore, this ECO system operates at ambient conditions and obviates the need for potent chemical oxidants, establishing a sustainable avenue for p-BQ production. Importantly, the system efficacy can be adaptable in actual phenol-containing coking wastewater, highlighting its potential practical application prospect. As a proof of concept, we construct an electrified Ru/C membrane for ECO of phenol, attaining phenol removal of 95.8% coupled with p-BQ selectivity of 73.1%, which demonstrates the feasibility of the ECO system in a scalable flow-through operation mode. This work provides a promising ECO strategy for realizing both phenols removal and valuable organics recovery from phenolic wastewater.


Asunto(s)
Benzoquinonas , Aguas Residuales , Contaminantes Químicos del Agua , Fenol/química , Fenoles , Carbono , Contaminantes Químicos del Agua/química
8.
J Mol Graph Model ; 127: 108693, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38070228

RESUMEN

Ab initio molecular dynamics studies have been performed on fluorobenzene, phenol, and aniline, which have the three most electronegative atoms, fluorine, oxygen, and nitrogen, respectively. Radial distribution functions show strong hydrogen bonding in the phenolic -OH group, whereas it is less prominent in the -NH2 group of aniline. Fluorobenzene does not show strong hydrogen bonds as no solvation shell is found between the fluorine atom and different aromatic hydrogens of the molecule. Spatial distribution functions show that the nitrogen atom of aniline interacts with the aromatic plane, the oxygen atom of phenol is concentrated near the -OH group and fluorobenzene's fluorine atom interacts with the para hydrogen. Liquid phase dimer structures of these systems reveal that perpendicular orientation (Y-shaped) is preferred over parallel ones. Almost half of the total dimer population tends to prefer 90∘±30° angle. H-bond analyses show that fluorobenzene has the longest mean H-bond lifetime for the H-bond between the aromatic hydrogens and the fluorine atoms, whereas the aniline has the least. The mean lifetime between aromatic hydrogens and electronegative atoms increases steadily from aniline to fluorobenzene. Phenolic -OH and amino -NH2 groups show considerably longer mean H-bond lifetime than the aromatic hydrogens. Gas-phase binding energies obtained from quantum chemical calculations show that aniline and phenol dimers have higher binding energy values than the fluorobenzene dimer. Only the phenol dimer shows a perpendicular structure as a stable one, while aniline and fluorobenzene prefer the parallel orientation.


Asunto(s)
Flúor , Fluorobencenos , Enlace de Hidrógeno , Fenol/química , Compuestos de Anilina , Oxígeno , Nitrógeno
9.
Bioresour Technol ; 394: 130207, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109978

RESUMEN

The treatment of coking wastewater with high phenol concentrations has been a challenge for conventional biological treatment technology. In this short communication, phenol-degrading bacteria domesticated by micro and nano bubbles (MNBs) water are used to treat the high- concentration phenol in an MNBs aeration reactor (MNB-AR). The results show that the MNB-AR can greatly improve the removal of phenol and chemical oxygen demand (COD). At a phenol concentration of 1000 mg L-1, the phenol and COD removal rates in the MNB-AR are 55 % and 39 % higher than in the conventional bubble aeration reactor respectively. MNB-AR performs more stably and reaches a higher phenol tolerance under fluctuating high-phenol-concentration loadings. Metagenomic analysis shows that MNBs promote the growth and metabolism of aerobic microorganisms related to phenol degradation, and enhance gene abundance related to carbon metabolism. MNBs aeration combined with microorganisms is an efficient solution for treating coking wastewater.


Asunto(s)
Bencenosulfonatos , Coque , Microbiota , Aguas Residuales , Fenol/química , Análisis de la Demanda Biológica de Oxígeno , Fenoles , Redes y Vías Metabólicas , Reactores Biológicos/microbiología
10.
Sci Rep ; 13(1): 21901, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081934

RESUMEN

Environmental pollution is a global phenomenon and troublesome fact that poses a grave risk to all living entities. Via coupling carbonaceous feedstocks with outstanding microbial activity, kinetic experiments were established using the consortium of Proteus mirabilis and Raoultella planticola, biochar-derived sunflower seed husk (SHB) and rice straw (RSB), and their composites, which investigated at 30 °C (150 rpm) to eliminate 700 mg L-1 lead (120 h) and phenol (168 h) from synthetic wastewater. The derived biochars physicochemical properties of were studied. According to adsorption capacity (qe), consortium-SHB composites and consortium-RSB composites removed lead completely (70 mg g-1) within 48 h and 66 h, respectively. Besides, phenol was remediated entirely after 42 h and 48 h by both composite systems (69.90 mg g-1), respectively, comparing with bacterial consortium only or parent SHB and RSB. Moreover, four kinetic models were studied to describe the bioremediation process. Fractional power and Elovich models could be recommended for describing the adsorption kinetics for lead and phenol removal by the studied biomaterials with high correlation coefficient (R2 ≥ 0.91 for Pb2+ and ≥ 0.93 for phenol) and lower residual root mean square error (RMSE) and chi-square (X2). Overall, bacterial consortium-biochar composites exhibited greater remediation of lead and phenol than the sum of each single bacterial consortium and biochar systems; reflecting synergistic interaction of adsorptive capability of biochar and metabolic performance of bacterial consortium, as denoted by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The current study addressed the successful design of employing functional remediating consortium immobilized on waste biomass-derived biochar as a conducive alternative eco-sorbent and economic platform to detoxify organic and inorganic pollutants.


Asunto(s)
Helianthus , Oryza , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Biodegradación Ambiental , Carbón Orgánico/química , Cinética , Plomo , Fenol/química , Fenoles , Semillas/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
11.
Water Sci Technol ; 88(9): 2332-2343, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37966186

RESUMEN

Hydroxyapatite (HAP) is a material renowned for its exceptional capabilities in adsorbing and exchanging heavy metal ions, making it a widely employed substance within the environmental domain. This study aims to present a novel material, namely copper-HAP (Cu-HAP), which was synthesized via an ion exchange method. The resulting material underwent comprehensive characterization using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. Subsequently, based on the principle of the Fenton-like oxidation reaction, the material was used for the degradation of phenol. The outcomes of the investigation revealed that the optimal preparation conditions for the catalyst were achieved at a temperature of 40 °C, a pH value of 5, and a relative dosage of Cu-HAP at 100 mg/g. Under the reaction conditions of a catalyst dosage of 2 g/L, a 30% hydrogen peroxide concentration of 30 mM, a phenol concentration of 20 mg/L, a pH value of 6, a temperature of 40 °C, and the degradation rate of phenol impressively reached 98.12%. Furthermore, the degradation rate remained at 42.31% even after five consecutive cycles, indicating the promising potential of Cu-HAP in the treatment of recalcitrant organic compounds within this field.


Asunto(s)
Cobre , Fenol , Fenol/química , Cobre/química , Intercambio Iónico , Durapatita , Fenoles , Catálisis
12.
Int J Pharm ; 648: 123600, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967687

RESUMEN

Multidose formulations have patient-centric advantages over single-dose formats. A major challenge in developing multidose formulations is the prevention of microbial growth that can potentially be introduced during multiple drawings. The incorporation of antimicrobial preservatives (APs) is a common approach to inhibit this microbial growth. Selection of the right preservative while maintaining drug product stability is often challenging. We explored the effects of three APs, 1.1 % (w/v) benzyl alcohol, 0.62 % (w/v) phenol, and 0.42 % (w/v) m-cresol, on a model immunoglobulin G1 monoclonal antibody, termed the "NIST mAb." As measured by hydrogen exchange-mass spectrometry (HX-MS) and differential scanning calorimetry, conformational stability was decreased in the presence of APs. Specifically, flexibility (faster HX) was significantly increased in the CH2 domain (HC 238-255) across all APs. The addition of phenol caused the greatest conformational destabilization, followed by m-cresol and benzyl alcohol. Storage stability studies conducted by subvisible particle (SVP) analysis at 40 °C over 4 weeks further revealed an increase in SVPs in the presence of phenol and m-cresol but not in the presence of benzyl alcohol. However, as monitored by size exclusion chromatography, there was neither a significant change in the monomeric content nor an accumulation of soluble aggregate in the presence of APs.


Asunto(s)
Antiinfecciosos , Anticuerpos Monoclonales , Humanos , Anticuerpos Monoclonales/química , Conservadores Farmacéuticos , Cresoles/química , Fenol/química , Antiinfecciosos/química , Alcoholes Bencílicos
13.
Environ Sci Pollut Res Int ; 30(57): 120763-120774, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37943438

RESUMEN

In this study, coal bottom ash from a thermoelectric plant was tested as an alternative Fenton catalyst for phenol degradation in water. The effect of operating parameters such as initial pH, catalyst dosage and H2O2 concentration were evaluated. The characterization results indicated that the material has a mesoporous structure, with active species (Fe) well distributed on its surface. Under the optimal reaction conditions (6 mM H2O2, 1 g L-1 of catalyst and pH = 3), 98.7% phenol degradation efficiency was achieved in 60 min, as well as 71.6% TOC removal after 150 min. Hydroxyl radical was identified as the main oxidizing agent involved on the cleavage of the phenol molecule. After four consecutive reuse cycles, phenol degradation efficiency was around 80%, indicating good reusability and stability of the catalyst. Therefore, the obtained results demonstrated that the bottom ash presents remarkable activity for application in the Fenton reaction towards phenol degradation.


Asunto(s)
Ceniza del Carbón , Fenol , Fenol/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Fenoles , Agua , Catálisis
14.
Environ Sci Pollut Res Int ; 30(58): 122611-122624, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37971593

RESUMEN

Phenol is one of the important ingredients of pyrolysis oil, contributing to the high biotoxicity of pyrolysis oil. To promote the degradation and conversion of phenol during anaerobic digestion, cheap hydro-chars with high phenol adsorption capacity were produced. The phenol adsorption capabilities of the plain hydro-char, plasma modified hydro-char at 25 °C (HC-NH3-P-25) and 500 °C (HC-NH3-P-500) were evaluated, and their adsorption kinetics and thermodynamics were explored. Experimental results indicate that the phenol adsorption capability of HC-NH3-P-500 was the highest. The phenol adsorption kinetics of all samples followed the pseudo-second-order equation and interparticle diffusion model, indicating that the adsorption rate of phenol was controlled by interparticle diffusion and chemistry adsorption simultaneously. By DFT calculations, π-π stacking and hydrogen bond are the main interactions for phenol adsorption. It was observed that an enriched graphite N content decreased the average vertical distance between hydro-chars and phenol in π-π stacking complex, from 3.5120 to 3.4532 Å, causing an increase in the negative adsorption energy between phenol and hydro-char from 13.9330 to 23.4181 kJ/mol. For hydrogen bond complex, the average vertical distance decreased from 3.4885 to 3.3386 Å due to the increase in graphite N content; causing the corresponding negative adsorption energy increased from 19.0233 to 19.9517 kJ/mol. Additionally, the presence of graphite N in the hydro-char created a positive diffusion region and enhanced the electron density between hydro-char and phenol. Analyses suggest that enriched graphite N contributed to the adsorption complex stability, resulting in an improved phenol adsorption capacity.


Asunto(s)
Grafito , Fenol , Fenol/química , Carbón Orgánico/química , Adsorción , Pirólisis , Fenoles , Cinética
15.
Chemosphere ; 345: 140400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863212

RESUMEN

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Asunto(s)
Fenol , Zeolitas , Fenol/química , Hierro/química , Fenoles , Agua , Peróxido de Hidrógeno/química , Catálisis
16.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(7): 198-212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37518009

RESUMEN

The recent industrial growth has made our lives more comfortable; however, it has led to an increase in the concentration of harmful compounds, such as carbon monoxide, volatile organic compounds (e.g., toluene), and phenolic compounds (e.g., phenol and cresol), in the environment. Catalytic oxidation using environmental catalysts is an important method for the removal of harmful compounds. To date, novel environmental catalysts have been developed from unique concepts based on solid-state ionics. In particular, the oxygen supply ability of a promoter can supply active oxygen from inside the lattice to the catalytically active site. Our catalysts exhibited high activity for the oxidation of harmful chemicals under moderate conditions in both the gaseous and liquid phases compared to conventional catalysts. This short review article describes our concepts of material design and our novel catalysts (ceria-zirconia (CeO2-ZrO2), apatite-type lanthanum silicate (La10Si6O27), and lanthanum oxyfluoride (LaOF) based catalysts).


Asunto(s)
Oxígeno , Compuestos Orgánicos Volátiles , Oxígeno/química , Lantano/química , Oxidación-Reducción , Fenol/química , Catálisis
17.
Int J Biol Macromol ; 248: 125947, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482163

RESUMEN

Phenolic foams are typically produced from phenolic resins, using phenol and formaldehyde precursors. Therefore, common phenolic foams are non-sustainable, comprising growing environmental, health, and economic concerns. In this work, lignin extracted from pine wood residues using a "green" levulinic acid-based solvent, was used to partially substitute non-sustainable phenol. The novel engineered foams were systematically compared to foams composed of different types of commercially available technical lignins. Different features were analyzed, such as foam density, microstructure (electron microscopy), surface hydrophilicity (contact angle), chemical grafting (infrared spectroscopy) and mechanical and thermal features. Overall, it was observed that up to 30 wt% of phenol can be substituted by the new type of lignin, without compromising the foam properties. This work provides a new insights on the development of novel lignin-based foams as a very promising sustainable and renewable alternative to petrol-based counterparts.


Asunto(s)
Lignina , Pinus , Lignina/química , Fenoles/química , Fenol/química , Madera/química
18.
Environ Res ; 235: 116657, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451579

RESUMEN

In this study, TiO2 was generated in situ on the surface of Ti3C2 by a hydrothermal process, and urea was added to form N-doped TiO2-Ti3C2. The surface morphology and functional group properties of the prepared materials were analyzed by SEM, TEM, XRD, XPS, etc. The results showed that anatase TiO2 formed on the surface of the Ti3C2 monolayer. Nitrogen-doped nanomaterials show good phenol degradation and good recyclability under visible light. At a urea content of 0.5 g, the photocatalytic degradation of phenol under visible light is best, reaching 88.9% in 3 h, with ·OH and ·O2- holes playing the leading role. However, at lower pH and higher ion concentration, the degradability of N-TiO2-Ti3C2 for phenol is reduced. Furthermore, the material prepared in this work is a two-dimensional layered material, and the adsorption of phenol best fits the Langmuir adsorption isotherm model and the pseudo-second-order kinetic equation. In terms of the antibacterial performance of the material, the N-doped TiO2-Ti3C2 nanomaterial made with 0.2 g of urea has an Escherichia coli scavenging efficiency of about 97.86%, which is an excellent antibacterial material. This study shows that the N-TiO2-Ti3C2 produced in this experiment can be used for environmental applications.


Asunto(s)
Contaminantes Ambientales , Titanio , Titanio/química , Luz , Fenol/química , Fenoles , Antibacterianos/farmacología , Oxígeno , Catálisis
19.
Chemosphere ; 336: 139200, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37321456

RESUMEN

A high-performance, durable, low-cost, and environmentally friendly catalyst is highly desired in advanced oxidation processes (AOPs) for water treatment. Considering the activity of Mn(Ⅲ) and the superior catalytic properties of reduced graphene oxide (rGO) in peroxymonosulfate (PMS) activation, rGO-modified MnOOH nanowires (MnOOH-rGO) were fabricated by a hydrothermal method for phenol degradation. The results showed that the composite synthesized at 120 °C with 1 wt% rGO dopant exhibited the best performance for phenol degradation. Nearly 100% of the phenol was removed by MnOOH-rGO within 30 min, which is higher than the removal rate of pure MnOOH (70%). The effects of catalyst dosages, PMS concentration, pH, temperature, and anions (Cl-, NO3-, HPO42-and HCO3-) on phenol degradation were investigated. The removal rate of chemical oxygen demand (COD) reached 26.4%, with a low molar ratio of PMS to phenol at 5:1 and a high PMS utilization efficiency (PUE) of 88.8%. The phenol removal rate remained more than 90% after five recycle with less than 0.1 mg L-1 leakage of manganese ions. Together with the results of radical quenching experiments, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR), electron transfer and 1O2 were proved to dominate the activation process. During the direct electrons transfer process, the electrons transfer from the phenol to PMS by using the Mn(Ⅲ) as the mediate with a stoichiometric ratio between PMS and phenol at 1:2, which mainly contributed to the high PUE. This work provides new insight into a high-performance Mn(Ⅲ) based catalyst on PMS activation with high PUE, good reusability, and environmentally friendly for removing organic pollutants.


Asunto(s)
Peróxidos , Fenol , Peróxidos/química , Fenol/química , Fenoles
20.
Environ Sci Pollut Res Int ; 30(34): 82795-82806, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37336851

RESUMEN

The Brazil nut shell was used as a precursor material for preparing activated carbon by chemical activation with potassium hydroxide. The obtained material (BNSAC) was characterized, and the adsorptive features of phenol were investigated. The characterization showed that the activated carbon presented several rounded cavities along the surface, with a specific surface area of 332 m2 g-1. Concerning phenol adsorption, it was favored using an adsorbent dosage of 0.75 g L-1 and pH 6. The kinetic investigation revealed that the system approached the equilibrium in around 180 min, and the Elovich model represented the kinetic curves. The Sips model well represented the equilibrium isotherms. In addition, the increase in temperature from 25 to 55 °C favored the phenol adsorption, increasing the maximum adsorption capacity value (qs) from 83 to 99 mg g-1. According to the estimated thermodynamic parameters, the adsorption was spontaneous, favorable, endothermic, and governed by physical interactions. Therefore, the Brazil nut shell proved a good precursor material for preparing efficient activated carbon for phenol removal.


Asunto(s)
Bertholletia , Contaminantes Químicos del Agua , Fenol/química , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Fenoles , Termodinámica , Adsorción , Agua , Cinética , Contaminantes Químicos del Agua/análisis , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...