Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 723
Filtrar
1.
J Transl Med ; 22(1): 473, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764035

RESUMEN

The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.


Asunto(s)
Fertilización , Gametogénesis , Diferenciación Sexual , Humanos , Gametogénesis/genética , Animales , Fertilización/genética , Diferenciación Sexual/genética , Secuencia Conservada/genética , Femenino , Masculino
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612464

RESUMEN

Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.


Asunto(s)
Placenta , Semen , Masculino , Femenino , Embarazo , Porcinos , Animales , Ratones , ADN Complementario , Espermatozoides , Euterios , Alanina , Isoantígenos/genética , Fertilización/genética
3.
Animal ; 18(5): 101137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626707

RESUMEN

The P of achieving pregnancy is an important trait of bull fertility in beef cattle and is defined as the bull conception rate (BCR). This study aimed to clarify and better understand the genetic architecture of the BCR calculated using artificial insemination and pregnancy diagnosis records from a progeny testing program in Japanese Black bulls. In this study, we estimated the genetic parameters of the BCR and their correlation with semen production traits. In addition, we assessed the correlated responses in BCR by considering the selection of semen production traits. Nine hundred and sixteen Japanese Black bulls were selected based on fertility, with 28 869 pregnancy diagnostic records from the progeny testing program. Our results showed that the heritability estimate was 0.04 in the BCR at the first service and 0.14 in BCR for the three services, and an increase in the inbreeding coefficient led to a significant decrease in BCR. The phenotypic trend of BCR remained almost constant over the years, whereas the genetic trend increased. In addition, the changes in the progeny testing year effect showed a similar tendency to the phenotypic trends, suggesting that the phenotypic trends could be mainly due to non-genetic effects, including progeny testing year effects. The estimated genetic correlation of BCR with sperm motility traits was favorably moderate to high (ranging from 0.49 to 0.97), and those with sperm quantity traits such as semen volume were favorably low to moderate (ranging from 0.23 to 0.51). In addition, the correlated responses in BCR at the first service by selection for sperm motility traits resulted in a higher genetic gain than direct selection. This study provides new insights into the genetic factors affecting BCR and the possibility of implementing genetic selection to improve BCR by selecting sperm motility traits in Japanese Black bulls.


Asunto(s)
Fertilidad , Inseminación Artificial , Semen , Animales , Bovinos/genética , Bovinos/fisiología , Masculino , Semen/fisiología , Femenino , Inseminación Artificial/veterinaria , Fertilidad/genética , Fertilización/genética , Embarazo , Motilidad Espermática/genética , Fenotipo , Cruzamiento , Análisis de Semen/veterinaria , Endogamia
4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542248

RESUMEN

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilización/genética , Semillas , Sapindaceae/genética , Hexosas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Hum Reprod ; 39(5): 880-891, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38414365

RESUMEN

STUDY QUESTION: Could actin-related protein T1 (ACTRT1) deficiency be a potential pathogenic factor of human male infertility? SUMMARY ANSWER: A 110-kb microdeletion of the X chromosome, only including the ACTRT1 gene, was identified as responsible for infertility in two Chinese males with sperm showing acrosomal ultrastructural defects and fertilization failure. WHAT IS KNOWN ALREADY: The actin-related proteins (e.g. ACTRT1, ACTRT2, ACTL7A, and ACTL9) interact with each other to form a multimeric complex in the subacrosomal region of spermatids, which is crucial for the acrosome-nucleus junction. Actrt1-knockout (KO) mice are severely subfertile owing to malformed sperm heads with detached acrosomes and partial fertilization failure. There are currently no reports on the association between ACTRT1 deletion and male infertility in humans. STUDY DESIGN, SIZE, DURATION: We recruited a cohort of 120 infertile males with sperm head deformations at a large tertiary hospital from August 2019 to August 2023. Genomic DNA extracted from the affected individuals underwent whole exome sequencing (WES), and in silico analyses were performed to identify genetic variants. Morphological analysis, functional assays, and ART were performed in 2022 and 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ACTRT1 deficiency was identified by WES and confirmed by whole genome sequencing, PCR, and quantitative PCR. Genomic DNA of all family members was collected to define the hereditary mode. Papanicolaou staining and electronic microscopy were performed to reveal sperm morphological changes. Western blotting and immunostaining were performed to explore the pathological mechanism of ACTRT1 deficiency. ICSI combined with artificial oocyte activation (AOA) was applied for one proband. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a whole-gene deletion variant of ACTRT1 in two infertile males, which was inherited from their mothers, respectively. The probands exhibited sperm head deformations owing to acrosomal detachment, which is consistent with our previous observations on Actrt1-KO mice. Decreased expression and ectopic distribution of ACTL7A and phospholipase C zeta were observed in sperm samples from the probands. ICSI combined with AOA effectively solved the fertilization problem in Actrt1-KO mice and in one of the two probands. LIMITATIONS, REASONS FOR CAUTION: Additional cases are needed to further confirm the genetic contribution of ACTRT1 variants to male infertility. WIDER IMPLICATIONS OF THE FINDINGS: Our results reveal a gene-disease relation between the ACTRT1 deletion described here and human male infertility owing to acrosomal detachment and fertilization failure. This report also describes a good reproductive outcome of ART with ICSI-AOA for a proband. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau, 2023MSXM008 and 2023MSXM054). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Acrosoma , Infertilidad Masculina , Proteínas de Microfilamentos , Adulto , Humanos , Masculino , Acrosoma/patología , Acrosoma/ultraestructura , Actinas/metabolismo , Actinas/genética , Secuenciación del Exoma , Fertilización/genética , Eliminación de Gen , Infertilidad Masculina/genética , Cabeza del Espermatozoide/ultraestructura , Cabeza del Espermatozoide/patología , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/ultraestructura , Espermatozoides/anomalías , Proteínas de Microfilamentos/genética
6.
Reprod Sci ; 31(5): 1408-1419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38216777

RESUMEN

Cumulus oophorus complexes (COCs) are the first extracellular barriers that sperm must pass through to fuse with oocytes, which have an important role in oocyte maturation and fertilization. However, little is known about the molecular mechanisms of COCs involved in fertilization. In this study, COCs were collected and then randomly divided into a test group that interacted with sperm and a control group that did not interact with sperm. Then, the total RNA was extracted; RNA transcriptome and small RNA libraries were prepared, sequenced, and analyzed. The results showed that 1283 differentially expressed genes (DEGs), including 560 upregulated and 723 downregulated genes. In addition, 57 differentially expressed miRNAs (DEMIs) with 35 upregulated and 22 downregulated were also detected. After the RNA-seq results were verified by RT-qPCR, 86 effective DEGs and 40 DEMIs were finally screened and a DEMI-DEG regulatory network was constructed. From this, the top ten hub target genes were HNF4A, SPN, WSCD1, TMEM239, SLC2A4, E2F2, SIAH3, ADORA3, PIK3R2, and GDNF, and they were all downregulated. The top ten hub DEMIs were miR-6876-5p, miR-877-3p, miR-6818-5p, miR-4690-3p, miR-6789-3p, miR-6837-5p, miR-6861-5p, miR-4421, miR-6501-5p, and miR-6875-3p, all of which were upregulated. The KEGG signaling pathway enrichment analysis showed that the effective DEGs were significantly enriched in the calcium, AMPK, and phospholipase D signaling pathways. Our study identified several DEGs and DEMIs and potential miRNA-mRNA regulatory pathways in COCs and these may contribute to fertilization. This study may provide novel insights into potential biomarkers for fertilization failure.


Asunto(s)
Células del Cúmulo , Redes Reguladoras de Genes , MicroARNs , ARN Mensajero , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células del Cúmulo/metabolismo , Fertilización/genética , Masculino , Perfilación de la Expresión Génica , Transcriptoma , Ratones , Regulación de la Expresión Génica
7.
Hum Reprod Update ; 30(1): 48-80, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37758324

RESUMEN

BACKGROUND: Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE: The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS: PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES: A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS: The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.


Asunto(s)
Actinas , Infertilidad , Embarazo , Femenino , Animales , Humanos , Fertilización/genética , Mutación , Aberraciones Cromosómicas
8.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992807

RESUMEN

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Asunto(s)
Fertilización , PPAR gamma , Peptidil-Dipeptidasa A , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina Trifosfato/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Fertilización/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Testículo/enzimología , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Proteínas Mitocondriales/genética , Técnicas de Inactivación de Genes , Fosforilación Oxidativa
9.
Nat Commun ; 14(1): 8234, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086980

RESUMEN

DNA methylation at the fifth position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification for regulating gene expression, but little is known about how it regulates gene expression in insects. Here, we pursue the detailed molecular mechanism by which DNMT1-mediated 5mC maintenance regulates female reproduction in the German cockroach, Blattella germanica. Our results show that Dnmt1 knockdown decreases the level of 5mC in the ovary, upregulating numerous genes during choriogenesis, especially the transcription factor ftz-f1. The hypomethylation at the ftz-f1 promoter region increases and prolongs ftz-f1 expression in ovarian follicle cells during choriogenesis, which consequently causes aberrantly high levels of 20-hydroxyecdysone and excessively upregulates the extracellular matrix remodeling gene Mmp1. These changes further impair choriogenesis and disrupt fertilization by causing anoikis of the follicle cells, a shortage of chorion proteins, and malformation of the sponge-like bodies. This study significantly advances our understanding of how DNA 5mC modification regulates female reproduction in insects.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Femenino , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Insectos/metabolismo , Fertilización/genética
10.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932452

RESUMEN

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Asunto(s)
Factores de Transcripción GATA , ARN Largo no Codificante , Animales , Femenino , Ratones , Fertilización/genética , Factores de Transcripción GATA/genética , Mamíferos , ARN Largo no Codificante/genética , Regulación hacia Arriba , Cromosoma X , Inactivación del Cromosoma X/genética
11.
Animal ; 17(6): 100851, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37263130

RESUMEN

The increase of longevity is intended to reduce involuntary culling rates, not extend the life span, and it reflects the ability of animals to successfully cope with the environment and disease during production. Sire model, animal model and repeatability animal models were used to estimate the (co) variance components of longevity and fertility traits. Six longevity and thirteen fertility traits were analysed, including herd life (HL), productive life (PL), number of days between first calving and the end of first lactation or culling (L1); number of days between first calving and the end of the second lactation or culling (L2); number of days between first calving and the end of the third lactation or culling (L3); number of days between first calving and the end of the fourth lactation or culling (L4); age at first service, age at first calving (AFC), the interval from first to last inseminations in heifer (IFLh), conception rate of first insemination in heifer, days open (DO), calving interval, gestation length, interval from calving to first insemination (ICF), interval from first to last inseminations in cow (IFLc), conception rate of first insemination in cow, calving ease (CE), birth weight, and calf survival. The estimated heritabilities (±SE) were 0.018 (±0.003), 0.015 (±0.003), 0.049 (±0.004), 0.025 (±0.003), 0.009 (±0.002) and 0.011 (±0.002) for HL, PL, L1, L2, L3 and L4, respectively. Strong correlations were appeared in HL and PL; the genetic and phenotypic correlation coefficients were 0.998 and 0.985, respectively. There were high genetic and phenotypic correlations which were observed in L1 and L2, L2 and L3, L3 and L4, respectively. All fertility traits of heifer showed medium to high heritability, while the cow showed low heritability. All heifer fertility traits had low genetic associations with longevity traits, ranging from -0.018 (L2 and IFLh) to 0.257 (L3 and AFC). Most of the fertility traits showed negative correlations with longevity traits in different parities, and we recommend DO, ICF, IFLc and CE as indirect indicators of longevity traits in dairy cows, but we also need to take into account the differences between parities.


Asunto(s)
Fertilidad , Longevidad , Bovinos/genética , Animales , Femenino , Longevidad/genética , Fertilidad/genética , Fertilización/genética , Lactancia/genética , Fenotipo
12.
J Assist Reprod Genet ; 40(8): 1787-1805, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37289376

RESUMEN

Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.


Asunto(s)
Semen , Espermatozoides , Masculino , Animales , Espermatozoides/fisiología , Fertilización In Vitro , Interacciones Espermatozoide-Óvulo/genética , Reacción Acrosómica , Oocitos/fisiología , Zona Pelúcida/fisiología , Fertilización/genética
13.
Hum Mol Genet ; 32(14): 2326-2334, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37133443

RESUMEN

Fertilization is a fundamental process of development, and the blocking mechanisms act at the zona pellucida (ZP) and plasma membrane of the egg to prevent any additional sperm from binding, permeating and fusing after fertilization. In clinical practice, some couples undergoing recurrent IVF failures that mature oocytes had abnormal fertilization for unknown reason. Ovastacin encoded by ASTL cleave the ZP protein ZP2 and play a key role in preventing polyspermy. Here, we identified bi-allelic variants in ASTL that are mainly characterized by fertilization problems in humans. All four independent affected individuals had bi-allelic frameshift variants or predicted damaging missense variants, which follow a Mendelian recessive inheritance pattern. The frameshift variants significantly decreased the quantity of ASTL protein in vitro. And all missense variants affected the enzymatic activity that cleaves ZP2 in mouse egg in vitro. Three knock-in female mice (corresponding to three missense variants in patients) all show subfertility due to low embryo developmental potential. This work presents strong evidence that pathogenic variants in ASTL cause female infertility and provides a new genetic marker for the diagnosis of fertilization problems.


Asunto(s)
Infertilidad Femenina , Semen , Humanos , Masculino , Femenino , Ratones , Animales , Glicoproteínas de la Zona Pelúcida/genética , Glicoproteínas de la Zona Pelúcida/metabolismo , Semen/metabolismo , Oocitos/metabolismo , Infertilidad Femenina/genética , Fertilización/genética , Metaloproteasas/genética
14.
Animal ; 17(5): 100804, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37141635

RESUMEN

Over the years, there has been considerable variation in the bull conception rate (BCR) of Japanese Black cattle; moreover, several Japanese Black bulls with a low BCR of ≤10% have been identified. However, the alleles responsible for the low BCR are not determined yet. Therefore, in this study, we aimed to identify single-nucleotide polymorphisms (SNPs) for predicting low BCR. To this end, the genome of Japanese Black bulls was comprehensively examined by a genome-wide association study with whole-exome sequencing (WES), and the effect of the identified marker regions on BCR was determined. The WES analysis of six sub-fertile bulls with a BCR of ≤10% and 73 normal bulls with a BCR of ≥40% identified a homozygous genotype for low BCR in Bos taurus autosome 5 in the region between 116.2 and 117.9 Mb. The g.116408653G > A SNP in this region had the most significant effect on the BCR (P-value = 1.0 × 10-23), and the GG (55.4 ± 11.2%) and AG (54.4 ± 9.4%) genotypes in the SNP had a higher phenotype than the AA (9.5 ± 6.1%) genotype for the BCR. The mixed model analysis revealed that g.116408653G > A was related to approximately 43% of the total genetic variance. In conclusion, the AA genotype of g.116408653G > A is a useful index for identifying sub-fertile Japanese Black bulls. Some positive and negative effects of SNP on the BCR were presumed to identify the causative mutations, which can help evaluate bull fertility.


Asunto(s)
Fertilización , Estudio de Asociación del Genoma Completo , Bovinos/genética , Animales , Masculino , Estudio de Asociación del Genoma Completo/veterinaria , Alelos , Fertilización/genética , Genotipo , Fertilidad/genética , Polimorfismo de Nucleótido Simple
15.
Zygote ; 31(4): 316-341, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37212058

RESUMEN

Fertilization failure (FF) and zygotic arrest after ICSI have a huge effect on both patients and clinicians, but both problems are usually unexpected and cannot be properly diagnosed. Fortunately, in recent years, gene sequencing has allowed the identification of multiple genetic variants underlying failed ICSI outcomes, but the use of this approach is still far from routine in the fertility clinic. In this systematic review, the genetic variants associated with FF, abnormal fertilization and/or zygotic arrest after ICSI are compiled and analyzed. Forty-seven studies were included. Data from 141 patients carrying 121 genetic variants affecting 16 genes were recorded and analyzed. In total, 27 variants in PLCZ1 (in 50 men) and 26 variants in WEE2 (in 24 women) are two of the factors related to oocyte activation failure that could explain a high percentage of male-related and female-related FF. Additional variants identified were reported in WBP2NL, ACTL9, ACTLA7, and DNAH17 (in men), and TUBB8, PATL2, TLE6, PADI6, TRIP13, BGT4, NLRP5, NLRP7, CDC20 and ZAR1 (in women). Most of these variants are pathogenic or potentially pathogenic (89/121, 72.9%), as demonstrated by experimental and/or in silico approaches. Most individuals carried bi-allelic variants (89/141, 63.1%), but pathogenic variants in heterozygosity have been identified for PLCZ1 and TUBB8. Clinical treatment options for affected individuals, such as chemical-assisted oocyte activation (AOA) or PLCZ1 cRNA injection in the oocyte, are still experimental. In conclusion, a genetic study of known pathogenic variants may help in diagnosing recurrent FF and zygotic arrest and guide patient counselling and future research perspectives.


Asunto(s)
Inyecciones de Esperma Intracitoplasmáticas , Cigoto , Masculino , Femenino , Animales , Oocitos/patología , Fertilización/genética
16.
Plant Cell Physiol ; 64(5): 454-460, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36943745

RESUMEN

In the anthers and ovaries of flowers, pollen grains and embryo sacs are produced with uniform cell compositions. This stable gametogenesis enables elaborate interactions between male and female gametophytes after pollination, forming the highly successful sexual reproduction system in flowering plants. As most ovules are fertilized with a single pollen tube, the resulting genome set in the embryo and endosperm is determined in a single pattern by independent fertilization of the egg cell and central cell by two sperm cells. However, if ovules receive four sperm cells from two pollen tubes, the expected options for genome sets in the developing seeds would more than double. In wild-type Arabidopsis thaliana plants, around 5% of ovules receive two pollen tubes. Recent studies have elucidated the abnormal fertilization in supernumerary pollen tubes and sperm cells related to polytubey, polyspermy, heterofertilization and fertilization recovery. Analyses of model plants have begun to uncover the mechanisms underlying this new pollen tube biology. Here, we review unusual fertilization phenomena and propose several breeding applications for flowering plants. These arguments contribute to the remodeling of plant reproduction, a challenging concept that alters typical plant fertilization by utilizing the current genetic toolbox.


Asunto(s)
Arabidopsis , Semillas , Semillas/metabolismo , Arabidopsis/metabolismo , Polen/genética , Tubo Polínico/genética , Fertilización/genética , Óvulo Vegetal/genética , Reproducción/genética
17.
Methods Mol Biol ; 2633: 131-143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36853462

RESUMEN

Xenopus has long had a reputation for being a powerful model organism for use in developmental cell and biochemistry research. With the advent of gene-editing technologies, and the full genome sequencing of Xenopus genomes revealing the extent of the genetic conservation between Xenopus and humans, Xenopus has the potential to become an ideal model for human genetic disease. However, the inability to produce non-mosaic, precise DNA insertions through homology directed repair has limited the strength of Xenopus this field. Furthermore, it has prevented researchers from taking full advantage of fusion tagging, a method for directly tagging genes with either epitope or fluorescent tags, allowing the visualization, quantification, and tracking of proteins without the use of protein-specific antibodies. Here, we describe a method for precise DNA insertion into oocytes using CRISPR/Cas9, followed by in vitro maturation and fertilization by intracytoplasmic sperm injection (ICSI), culminating in the production of embryos carrying a non-mosaic, heterozygous insertion.


Asunto(s)
Sistemas CRISPR-Cas , Inyecciones de Esperma Intracitoplasmáticas , Masculino , Humanos , Animales , Xenopus laevis/genética , Sistemas CRISPR-Cas/genética , Semen , Oocitos , Anticuerpos , Fertilización/genética
18.
Clin Genet ; 103(5): 603-608, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36593593

RESUMEN

Total fertilization failure (TFF), which refers to fertilization failure in all mature oocytes, accounting for 5%-10% of in vitro fertilization (IVF) cycles and 1%-3% of intracytoplasmic sperm injection (ICSI) cycles in human. In this study, we recruited three unrelated primary infertile men with repeated cycles of TFF and performed whole-exome sequencing to identify the potential pathogenic variants. We identified homozygous or compound-heterozygous variants of paternal-effect genes ACTL7A and PLCZ1 that followed a Mendelian recessive inheritance pattern. Novel homozygous nonsense variant in ACTL7A [c.C146G: p.S49*] was identified in case 1, who came from a consanguineous family. Ultrastructural observation of ACTL7A-mutated spermatozoa by transmission electron microscopy (TEM) indicated that apparent increased thickness of perinuclear matrix and the acrosome was detached from the nuclear envelop. Besides, two novel compound-heterozygous variants in PLCZ1 were identified in case 2 [c.1174+3A>C:p.?; c.A1274G:p.N425S] and case 3 [c.136-1G>C:p.?; c.G1358A:p.G453D]. Mutated spermatozoa from case 2 with reduced expression of PLCZ1 showed apparent acrosome detachment by TEM analysis. And ICSI with assisted oocyte activation (ICSI-AOA) treatment can partly rescue the TFF. Taken together, our findings revealed that novel biallelic variants in the paternal-effect genes ACTL7A and PLCZ1 were associated with human TFF, which expanding the spectrum of genetic causes and facilitating the genetic diagnosis of male infertility with TFF.


Asunto(s)
Actinas , Infertilidad Masculina , Fosfoinositido Fosfolipasa C , Semen , Femenino , Humanos , Masculino , Embarazo , Fertilización/genética , Fertilización In Vitro , Infertilidad Masculina/genética , Oocitos , Fosfoinositido Fosfolipasa C/genética , Índice de Embarazo , Espermatozoides/metabolismo , Actinas/genética
19.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36656648

RESUMEN

The molecular mechanism of sperm-egg fusion is a long-standing mystery in reproduction. Brukman and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202207147) now provide evidence that the sperm surface protein IZUMO1, which is essential for mammalian fertilization, can induce membrane fusion in cultured cells.


Asunto(s)
Fusión de Membrana , Proteínas de la Membrana , Interacciones Espermatozoide-Óvulo , Animales , Masculino , Fertilización/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Mamíferos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Semen/metabolismo , Interacciones Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Células Cultivadas
20.
J Assist Reprod Genet ; 40(1): 53-64, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529831

RESUMEN

PURPOSE: To investigate the genetic causes of polyspermy and total fertilization failure (TFF) in two independent male patients suffering from male infertility. METHODS: Immunofluorescence (IF) staining was used to detect the localization of the PLCζ protein in sperm and the maternal pronucleus in the zygote. Genomic DNA samples were extracted from the peripheral blood of patients and their families. The ExAC database was used to identify the frequency of corresponding mutations. The PLCZ1 mutations were validated by Sanger sequencing. The pathogenicity of the identified mutations and their possible effects on the protein were assessed using in silico tools and molecular modeling. RESULTS: We identified a reported homozygous mutation c.588C > A (p.Cys196Ter) and a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in PLCZ1. The IF results showed that these multipronuclear zygotes formed as a result of polyspermy. In silico analysis predicted that the mutations result in disease-causing proteins. IF staining revealed that PLCζ is abnormally localized in the sperm samples from the two affected patients. Assisted oocyte activation (AOA) successfully rescued polyspermy and TFF and achieved pregnancy in two patients with the PLCZ1 mutation. CONCLUSION: We identified a homozygous mutation in PLCZ1 (c.588C > A [p.Cys196Ter]) in a male patient with polyspermy after in vitro fertilization (IVF) as well as a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in a male patient with fertilization failure after intracytoplasmic sperm injection (ICSI), and we provide evidence that the homozygous mutation can cause polyspermy and the compound heterozygous mutation can cause fertilization failure.


Asunto(s)
Infertilidad Masculina , Semen , Humanos , Embarazo , Femenino , Masculino , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Mutación/genética , Fertilización In Vitro , Espermatozoides/metabolismo , Oocitos/metabolismo , Fertilización/genética , Fosfoinositido Fosfolipasa C/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...