Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
J Agric Food Chem ; 72(33): 18520-18527, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105744

RESUMEN

Genome mining in association with the OSMAC (one strain, many compounds) approach provides a feasible strategy to extend the chemical diversity and novelty of natural products. In this study, we identified the biosynthetic gene cluster (BGC) of restricticin, a promising antifungal agent featuring a reactive primary amine, from the fungus Aspergillus sclerotiorum LZDX-33-4 by genome mining. Combining heterologous expression and the OSMAC strategy resulted in the production of a new hybrid product (1), along with N-acetyl-restricticin (2) and restricticinol (3). The structure of 1 was determined by spectroscopic data, including optical rotation and electronic circular dichroism (ECD) calculations, for configurational assignment. Compound 1 represents a fusion of restricticin and phytotoxic cichorin. The biosynthetic pathway of 1 was proposed, in which the condensation of a primary amine of restricticin with a precursor of cichorine was postulated. Compound 1 at 5 mM concentration inhibited the growth of the shoots and roots of Lolium perenne, Festuca arundinacea, and Lactuca sativa with inhibitory rates of 71.3 and 88.7% for L. perenne, 79.4 and 73.0% for F. arundinacea, and 58.2 and 52.9% for L. sativa. In addition, compound 1 at 25 µg/mL showed moderate antifungal activity against Fusarium fujikuroi and Trichoderma harzianum with inhibition rates of 22.6 and 31.6%, respectively. These results suggest that heterologous expression in conjunction with the OSMAC approach provides a promising strategy to extend the metabolite novelty due to the incorporation of endogenous metabolites from the host strain with exogenous compounds, leading to the production of more complex compounds and the acquisition of new physiological functions.


Asunto(s)
Lactuca , Lolium , Lolium/genética , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Lactuca/efectos de los fármacos , Lactuca/genética , Lactuca/crecimiento & desarrollo , Familia de Multigenes , Festuca/genética , Festuca/metabolismo , Festuca/microbiología , Festuca/efectos de los fármacos , Festuca/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Vías Biosintéticas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Estructura Molecular , Genoma Fúngico , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Fusarium/efectos de los fármacos , Fusarium/genética , Fusarium/crecimiento & desarrollo
2.
Animal ; 18(8): 101256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106555

RESUMEN

There is a balance between DM yield and feed value when choosing types of grasses on a farm depending on the acreages of farmland and types of ruminants to be fed. Therefore, optimisation of the harvest strategy for grass silage is important for profitable dairy farming. Tall fescue has high DM yield and can replace traditional grasses, such as timothy, in Northern Europe in a changing climate as it has been shown to be more drought tolerant. As differences in climate responses previously have been related to differences in cell wall structure between grass species and, consequently, in digestibility, it is highly relevant to compare these species at similar maturity stages and to investigate if a very early harvest date will diminish potential differences between the species. This study evaluated the effects of harvest date and forage species on the concentration of hydroxycinnamic acids in silages and its relationship to feed efficiency of dairy cows. Tall fescue and timothy were harvested at very early date on May 25 or at early date on May 31 in the spring growth cycle. Forty lactating dairy cows were used in a block design. Cows received 1 of 4 treatments: (1) tall fescue harvested at very early date, (2) timothy harvested at very early date, (3) tall fescue harvested at early date, and (4) timothy harvested at early date. Diets were formulated to have the same forage-to-concentrate ratio (49:51 on DM basis). Tall fescue silages showed greater concentrations of DM, ash, and CP than timothy silages. Grasses harvested at early date showed greater concentrations of NDF, ADL, and cell wall than grasses harvested at very early date. Tall fescue silages showed greater concentration of p-coumaric acid and lower in vitro organic matter digestibility (IVOMD) compared to timothy silages. Milk production and composition were not affected by treatments but cows fed tall fescue-based diets showed lower milk protein yield and greater milk urea nitrogen than when timothy-based diets were fed. Furthermore, cows receiving timothy-based diets showed greater feed efficiency compared to cows receiving tall fescue-based diets. Thus, the lower concentration of p-coumaric acid and the higher IVOMD was associated with greater feed efficiency of cows fed timothy-based diets compared to tall fescue-based diets.


Asunto(s)
Alimentación Animal , Pared Celular , Dieta , Ensilaje , Animales , Bovinos/fisiología , Femenino , Ensilaje/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Phleum , Industria Lechera/métodos , Lactancia , Leche/química , Leche/metabolismo , Festuca , Poaceae , Fenómenos Fisiológicos Nutricionales de los Animales , Digestión/fisiología
3.
BMC Genomics ; 25(1): 683, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982385

RESUMEN

BACKGROUND: The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS: Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS: These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.


Asunto(s)
Respuesta al Choque Térmico , Complejo de Proteína del Fotosistema II , Proteómica , Termotolerancia , Complejo de Proteína del Fotosistema II/metabolismo , Proteómica/métodos , Festuca/metabolismo , Festuca/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteoma/metabolismo
4.
Proc Biol Sci ; 291(2027): 20240673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39079667

RESUMEN

Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.


Asunto(s)
Pisum sativum , Raíces de Plantas , Pisum sativum/fisiología , Raíces de Plantas/fisiología , Festuca/fisiología , Suelo/química , Biomasa
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39073441

RESUMEN

Consumption of toxic endophyte-infected tall fescue (EI) results in poor reproductive performance in domestic livestock. In this study, the objective was to evaluate the effects of ergovaline exposure during mid-gestation (days 93 through 188 of gestation) on dam performance, the growing female fetus, and the subsequent growth and reproductive performance of the gestationally exposed heifer calves. Pregnant Angus and Simmental-Angus cows were blocked by age (2 to 3, to 7, and >7 y), body weight (BW), and breed; and then randomly assigned to graze either novel endophyte-infected tall fescue (EN; <5% infection rate; n = 27 year 1, n = 16 year 2) or toxic EI (99% infection rate; n = 27 year 1, n = 17 year 2). Weekly BW, body condition scores (BCS), hair coat scores, hair shedding scores (HSS), and blood samples for progesterone (P4) analysis were collected from mid-April through July of 2017 (year 1) and 2018 (year 2). Gestation length, birth weight, placental characteristics, heifer calf growth, onset of puberty, ovarian characteristics, and artificial insemination pregnancy rates were measured. Data were analyzed using the MIXED procedure of SAS. Cows grazing EI pastures had reduced average daily gain, reduced BCS, greater HSS, and decreased P4 concentrations compared to cows on EN pasture (P < 0.01). Birth weights were decreased for heifers whose dams were exposed to EI pastures during their second trimester (P < 0.01). Heifer pregnancy rates were not impacted by EI pasture exposure during gestation for either year of the study. However, a treatment-by-year effect was seen for the pregnancy rate for EI-exposed heifers in year 2; EI-exposed heifers in year 2 had increased pregnancy rates at two of the inseminations. Combined, these data reinforce that consumption of toxic EI during gestation can negatively impact both dam and offspring performance. More studies are needed to evaluate more parameters in an effort to elucidate the possible life-long impacts of ergovaline exposure during gestation.


The U.S. livestock industry incurs over one billion dollars of economic loss every year due to fescue toxicosis, caused by consuming ergot alkaloids produced by an endophytic fungus in some grass species. Identifying means to mitigate the negative effects of fescue toxicosis is needed for U.S. beef producers. Effective treatment for this toxicosis is still needed. The objective of this study was to evaluate the effects of ergovaline exposure during mid-gestation on dam performance, the growing female fetus, and the subsequent growth and reproductive performance of the gestationally exposed heifer calves. We identified specific phenotype traits that undergo developmental programming in utero in response to fescue toxicosis. However, measurements of growth and reproductive performance were not altered by ergot exposure.


Asunto(s)
Alcaloides de Claviceps , Reproducción , Animales , Bovinos , Femenino , Embarazo , Reproducción/efectos de los fármacos , Alcaloides de Claviceps/toxicidad , Alimentación Animal/análisis , Desarrollo Fetal/efectos de los fármacos , Dieta/veterinaria , Festuca/microbiología , Enfermedades de los Bovinos/inducido químicamente , Enfermedades de los Bovinos/microbiología , Ergotaminas
6.
PLoS One ; 19(7): e0306431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39058685

RESUMEN

The objective of our study was to evaluate the effect of endophyte-infected tall fescue (E+) seeds intake on liver tissue transcriptome in growing Angus × Simmental steers and heifers through RNA-seq analysis. Normal weaned calves (~8 months old) received either endophyte-free tall fescue (E-; n = 3) or infected tall fescue (E+; n = 6) seeds for a 30-d period. The diet offered was ad libitum bermudagrass (Cynodon dactylon) hay combined with a nutritional supplement of 1.61 kg (DM basis) of E+ or E- tall fescue seeds, and 1.61 kg (DM basis) of energy/protein supplement pellets for a 30-d period. Dietary E+ tall fescue seeds were included in a rate of 20 µg of ergovaline/kg BW/day. Liver tissue was individually obtained through biopsy at d 30. After preparation and processing of the liver samples for RNA sequencing, we detected that several metabolic pathways were activated (i.e., upregulated) by the consumption of E+ tall fescue. Among them, oxidative phosphorylation, ribosome biogenesis, protein processing in endoplasmic reticulum and apoptosis, suggesting an active mechanism to cope against impairment in normal liver function. Interestingly, hepatic protein synthesis might increase due to E+ consumption. In addition, there was upregulation of "thermogenesis" KEGG pathway, showing a possible increase in energy expenditure in liver tissue due to consumption of E+ diet. Therefore, results from our study expand the current knowledge related to liver metabolism of growing beef cattle under tall fescue toxicosis.


Asunto(s)
Alimentación Animal , Endófitos , Hígado , Semillas , Animales , Bovinos , Semillas/microbiología , Hígado/metabolismo , Hígado/microbiología , Alimentación Animal/análisis , Transcriptoma , Femenino , Masculino , Festuca/microbiología , Perfilación de la Expresión Génica , Ergotaminas/metabolismo
7.
BMC Plant Biol ; 24(1): 714, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060979

RESUMEN

BACKGROUND: Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS: The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS: Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.


Asunto(s)
Festuca , Plantones , Agua , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/metabolismo , Agua/metabolismo , Transcriptoma , Germinación , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo
8.
Chemosphere ; 363: 142794, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977248

RESUMEN

The leaves of Festuca arundinacea can excrete cadmium (Cd) out onto the leaf surface, leading to a bio-pump phytoremediation strategy based on "root uptake-root-to-leaf translocation-leaf excretion". However, the bio-bump efficiency of soil Cd is a limiting factor for the implementation of this novel technology. Bio-bump remediation involves the bioprocess of plant root uptake from soil, root-to-leaf translocation, and leaf hydathode excretion. Here we show the significant effects of phytohormones in regulating the bio-pump phytoextraction efficiency. The results showed that salicylic acid and ethylene enhanced the whole process of Cd root uptake, root-to-leaf translocation, and leaf excretion, promoting the bio-pump phytoextraction efficiency by 63.6% and 73.8%, respectively. Gibberellin also greatly promoted Cd translocation, leaf excretion, and phytoextraction, but did not significantly impact Cd root uptake. Our results indicate that salicylic acid and ethylene could be recommended to promote bio-pump phytoextraction efficiency in F. arundinacea. Gibberellin might be used for a short-term promotion of the leaf Cd excretion.


Asunto(s)
Biodegradación Ambiental , Cadmio , Festuca , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Raíces de Plantas , Ácido Salicílico , Contaminantes del Suelo , Cadmio/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Festuca/metabolismo , Raíces de Plantas/metabolismo , Etilenos/metabolismo , Giberelinas/metabolismo , Suelo/química
9.
PLoS One ; 19(6): e0304689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875285

RESUMEN

To explore cost-effective and efficient phytoremediation strategies, this study investigated the distinct roles of earthworm activity and mucus in enhancing Cd phytoextraction from soils contaminated by Festuca arundinacea, focusing on the comparative advantages of selective leaf harvesting versus traditional whole-plant harvesting methods. Our study employed a horticultural trial to explore how earthworm activity and mucus affect Festuca arundinacea' s Cd phytoremediation in soils using control, earthworm, and mucus treatments to examine their respective effects on plant growth and Cd distribution. Earthworm activity increased the dry weight of leaves by 13.5% and significantly increased the dry weights of declining and senescent leaves, surpassing that of the control by more than 40%. Earthworm mucus had a similar, albeit less pronounced, effect on plant growth than earthworm activity. This study not only validated the significant role of earthworm activity in enhancing Cd phytoextraction by Festuca arundinacea, with earthworm activity leading to over 85% of Cd being allocated to senescent tissues that comprise only approximately 20% of the plant biomass, but also highlighted a sustainable and cost-effective approach to phytoremediation by emphasizing selective leaf harvesting supported by earthworm activity. By demonstrating that earthworm mucus alone can redistribute Cd with less efficiency compared to live earthworms, our findings offer practical insights into optimizing phytoremediation strategies and underscore the need for further research into the synergistic effects of biological agents in soil remediation processes.


Asunto(s)
Biodegradación Ambiental , Cadmio , Festuca , Moco , Oligoquetos , Hojas de la Planta , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Oligoquetos/fisiología , Cadmio/metabolismo , Hojas de la Planta/metabolismo , Festuca/metabolismo , Contaminantes del Suelo/metabolismo , Moco/metabolismo , Biomasa , Suelo/química
10.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890560

RESUMEN

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Asunto(s)
Festuca , Lolium , Fenotipo , Semillas , Lolium/crecimiento & desarrollo , Lolium/genética , Lolium/anatomía & histología , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/anatomía & histología , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/anatomía & histología
11.
Molecules ; 29(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792226

RESUMEN

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Asunto(s)
Alelopatía , Hordeum , Extractos Vegetales , Hordeum/química , Hordeum/crecimiento & desarrollo , Hordeum/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Especies Introducidas , Trifolium/química , Trifolium/crecimiento & desarrollo , Trifolium/efectos de los fármacos , Hojas de la Planta/química , Cromatografía de Gases y Espectrometría de Masas , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Festuca/efectos de los fármacos , Festuca/crecimiento & desarrollo , Festuca/química
12.
J Evol Biol ; 37(6): 704-716, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761114

RESUMEN

The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.


Asunto(s)
Festuca , Festuca/genética , Cambio Climático , Adaptación Fisiológica/genética
13.
Sci Total Environ ; 933: 172990, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38710395

RESUMEN

Antimony (Sb) is a toxic heavy metal that severely inhibits plant growth and development and threatens human health. Tall fescue, one of the most widely used grasses, has been reported to tolerate heavy metal stress. However, the adaptive mechanisms of Sb stress in tall fescue remain largely unknown. In this study, transcriptomic and metabolomic techniques were applied to elucidate the molecular mechanism of the Sb stress response in tall fescue. These results showed that the defense process in tall fescue was rapidly triggered during the early stages of Sb stress. Sb stress had toxic effects on tall fescue, and the cell wall and voltage-gated channels are crucial for regulating Sb permeation into the cells. In addition, the pathway of glycine, serine and threonine metabolism may play key roles in the Sb stress response of tall fescue. Genes such as ALDH7A1 and AGXT2 and metabolites such as aspartic acid, pyruvic acid, and biuret, which are related to biological processes and pathways, were key genes and compounds in the Sb stress response of tall fescue. Therefore, the regulatory mechanisms of specific genes and pathways should be investigated further to improve Sb stress tolerance.


Asunto(s)
Antimonio , Festuca , Estrés Fisiológico , Transcriptoma , Festuca/metabolismo , Festuca/efectos de los fármacos , Festuca/genética , Antimonio/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Metabolómica , Metaboloma/efectos de los fármacos
14.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657453

RESUMEN

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Asunto(s)
Biodegradación Ambiental , Cadmio , Festuca , Hojas de la Planta , Raíces de Plantas , Hojas de la Planta/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Raíces de Plantas/metabolismo , Festuca/metabolismo , Festuca/efectos de los fármacos , Riego Agrícola/métodos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Agua/química
15.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502533

RESUMEN

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ±â€…9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.


Fescue has become the dominant cool-season perennial grass in the southeastern region of the United States and is also found in other countries. Endophytes from a plant­fungus symbiotic relationship produce toxic alkaloids that have caused significant annual economic losses to the livestock industry. Treatments to alleviate this toxicosis are still demanded. This study evaluates the infusion of the dopamine precursor, levodopa (L-DOPA), to mitigate the toxicosis caused by ergot alkaloids. When L-DOPA was infused, eating duration increased and the decrease in feed intake caused by ergot alkaloids was less severe. Additionally, circulating dopamine and glucose clearance increased with L-DOPA. These results suggest that L-DOPA has the potential to aid in the mitigation of the toxicosis caused by ergot alkaloids.


Asunto(s)
Alcaloides de Claviceps , Festuca , Lolium , Bovinos , Animales , Alcaloides de Claviceps/toxicidad , Levodopa , Dopamina , Prolactina , Ingestión de Alimentos , Endófitos , Norepinefrina , Alimentación Animal/análisis , Epinefrina , Glucosa
16.
Plant J ; 118(4): 1102-1118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323852

RESUMEN

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Asunto(s)
Núcleo Celular , Festuca , Lolium , Poliploidía , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma del Cloroplasto , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridación Genética , Regulación de la Expresión Génica de las Plantas
17.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320313

RESUMEN

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , Simbiosis
18.
PeerJ ; 12: e16791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259666

RESUMEN

Nitrogen (N) addition is a simple and effective field management approach to enhancing plant productivity. Nonetheless, the regulatory mechanisms governing nitrogen concentrations and their effect on soil enzyme activity, nutrient levels, and seed yield in the Festuca kirilowii seed field have yet to be elucidated. Therefore, this study sought to investigate the effect of N fertilizer application on soil enzyme activities, soil nutrients, and seed yield of F. kirilowii Steud cv. Huanhu, the only domesticated variety in the Festuca genus of the Poaceae family, was investigated based on two-year field experiments in the Qinghai-Tibet Plateau (QTP). Results showed that N input significantly affected soil nutrients (potential of hydrogen, total nitrogen, organic matter, and total phosphorus). In addition, soil enzyme activities (urease, catalase, sucrase, and nitrate reductase) significantly increased in response to varying N concentrations, inducing changes in soil nutrient contents. Introducing N improved both seed yield and yield components (number of tillers and number of fertile tillers). These findings suggest that the introduction of different concentrations of N fertilizers can stimulate soil enzyme activity, thus hastening nutrient conversion and increasing seed yield. The exhaustive evaluation of the membership function showed that the optimal N fertilizer treatment was N4 (75 kg·hm-2) for both 2022 and 2023. This finding provides a practical recommendation for improving the seed production of F. kirilowii in QTP.


Asunto(s)
Fertilizantes , Festuca , Semillas , Nitrógeno/farmacología , Nutrientes , Suelo
19.
Ecotoxicol Environ Saf ; 271: 115975, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244514

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.


Asunto(s)
Festuca , Lolium , Hidrocarburos Policíclicos Aromáticos , Festuca/metabolismo , Naftalenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Lolium/metabolismo , Espectrometría de Masas
20.
Vet Clin North Am Equine Pract ; 40(1): 95-111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281896

RESUMEN

"Fescue toxicosis" and reproductive ergotism present identical toxidromes in late-gestational mares and, likely, other equids. Both toxic syndromes are caused by ergopeptine alkaloids (EPAs) of fungal origin, and they are collectively referred to as equine ergopeptine alkaloid toxicosis (EEPAT). EPAs are produced by either a toxigenic endophyte (Epichloë coenophiala) in tall fescue and/or a nonendophytic fungus (Claviceps purpurea), infecting small grains and grasses. EEPAT can cause hypoprolactinemia-induced agalactia/dysgalactia, prolonged gestation, dystocia, and other reproductive abnormalities in mares, as well as failure of passive transfer in their frequently dysmature/overmature/postmature foals. Prevention relies on eliminating exposures and/or reversing hypoprolactinemia.


Asunto(s)
Alcaloides de Claviceps , Festuca , Enfermedades de los Caballos , Animales , Caballos , Femenino , Embarazo , Alcaloides de Claviceps/toxicidad , Endófitos , Enfermedades de los Caballos/inducido químicamente , Festuca/microbiología , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA