Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Sci Total Environ ; 933: 172990, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38710395

RESUMEN

Antimony (Sb) is a toxic heavy metal that severely inhibits plant growth and development and threatens human health. Tall fescue, one of the most widely used grasses, has been reported to tolerate heavy metal stress. However, the adaptive mechanisms of Sb stress in tall fescue remain largely unknown. In this study, transcriptomic and metabolomic techniques were applied to elucidate the molecular mechanism of the Sb stress response in tall fescue. These results showed that the defense process in tall fescue was rapidly triggered during the early stages of Sb stress. Sb stress had toxic effects on tall fescue, and the cell wall and voltage-gated channels are crucial for regulating Sb permeation into the cells. In addition, the pathway of glycine, serine and threonine metabolism may play key roles in the Sb stress response of tall fescue. Genes such as ALDH7A1 and AGXT2 and metabolites such as aspartic acid, pyruvic acid, and biuret, which are related to biological processes and pathways, were key genes and compounds in the Sb stress response of tall fescue. Therefore, the regulatory mechanisms of specific genes and pathways should be investigated further to improve Sb stress tolerance.


Asunto(s)
Antimonio , Festuca , Estrés Fisiológico , Transcriptoma , Festuca/metabolismo , Festuca/efectos de los fármacos , Festuca/genética , Antimonio/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Metabolómica , Metaboloma/efectos de los fármacos
2.
Plant J ; 118(4): 1102-1118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323852

RESUMEN

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Asunto(s)
Núcleo Celular , Festuca , Lolium , Poliploidía , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma del Cloroplasto , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridación Genética , Regulación de la Expresión Génica de las Plantas
3.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789301

RESUMEN

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Asunto(s)
Festuca , Genoma de Plastidios , Lolium , Festuca/genética , Fitomejoramiento , Poaceae/genética , Lolium/genética , ADN de Plantas/genética
4.
Ann Bot ; 131(6): 1011-1023, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37209108

RESUMEN

BACKGROUND AND AIMS: Grasses of the Festuca genus have complex phylogenetic relations due to morphological similarities among species and interspecific hybridization processes. Within Patagonian fescues, information concerning phylogenetic relationships is very scarce. In Festuca pallescens, a widely distributed species, the high phenotypic variability and the occurrence of interspecific hybridization preclude a clear identification of the populations. Given the relevance of natural rangelands for livestock production and their high degradation due to climate change, conservation actions are needed and knowledge about genetic variation is required. METHODS: To unravel the intraspecific phylogenetic relations and to detect genetic differences, we studied 21 populations of the species along its natural geographical distribution by coupling both molecular [internal transcribed spacer (ITS) and trnL-F markers] and morpho-anatomical analyses. Bayesian inference, maximum likelihood and maximum parsimony methods were applied to assemble a phylogenetic tree, including other native species. The morphological data set was analysed by discriminant and cluster analyses. KEY RESULTS: The combined information of the Bayesian tree (ITS marker), the geographical distribution of haplotype variants (trnL-F marker) and the morpho-anatomical traits, distinguished populations located at the margins of the distribution. Some of the variants detected were shared with other sympatric species of fescues. CONCLUSIONS: These results suggest the occurrence of hybridization processes between species of the genus at peripheral sites characterized by suboptimal conditions, which might be key to the survival of these populations.


Asunto(s)
Festuca , Filogenia , Festuca/genética , Teorema de Bayes , Variación Genética , Poaceae/genética , Análisis de Secuencia de ADN
5.
Sci Rep ; 13(1): 5285, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002231

RESUMEN

In semi-arid and arid regions, the selection of suitable grass species with high-yield production, tolerance to drought stress, and potential for recovery from drought is of special importance. Despite extensive research in cool-season grasses, inter-species differences in post-drought recovery, persistence, survival, and summer dormancy and their relationship with drought tolerance need more investigation. In the present study, 28 diverse genotypes belonged to seven cool-season grass species, including Festuca arundinacea (tall fescue), Festuca pratensis (meadow fescue), Festuca ovina (sheep fescue), Festuca rubra (red fescue), Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium × hybridum were evaluated during 2016-2019 under three irrigation regimes (normal, mild, and intense drought stress). Then in the fourth year (on August 2019), irrigation was withheld at all previous irrigation regimes for two months during summer, and then species were re-irrigated to study the effect of prolonged drought conditions. A wide range of genetic diversity was detected in all the measured traits among and within species in response to different irrigation levels. Recurrent drought stress decreased forage productivity, post-drought recovery, and survival in all grass species. Among the studied species, tall fescue had higher forage production, drought tolerance, survival, recovery rate, and persistence. Sheep fescue had low forage production and recovery after drought. Drought tolerance (based on stress tolerance score, STS) was highly associated with forage yield and post-drought recovery and partially with summer dormancy under both mild and intense drought stress conditions. This indicated that selection based on higher STS would lead to choosing genotypes with better recovery after prolonged drought. Superior species and preferable genotypes for forage use from species Festuca arundinacea and for turf application from species Festuca arundinacea, Lolium perenne and Lolium × hybridum were identified across different water environments for future programs.


Asunto(s)
Festuca , Lolium , Animales , Ovinos , Poaceae/genética , Sequías , Estaciones del Año , Lolium/genética , Plantas , Festuca/genética
6.
New Phytol ; 238(2): 624-636, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36658468

RESUMEN

Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.


Asunto(s)
Festuca , Lolium , Lolium/genética , Festuca/genética , Hibridación Genética , Genoma de Planta , Cromosomas de las Plantas/genética , Meiosis/genética
7.
J Exp Bot ; 74(1): 396-414, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214776

RESUMEN

A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.


Asunto(s)
Resistencia a la Sequía , Festuca , Lolium , Resistencia a la Sequía/genética , Sequías , Festuca/genética , Festuca/metabolismo , Lolium/genética , Lolium/metabolismo , Genotipo
8.
Genes (Basel) ; 13(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36553578

RESUMEN

In the highlands of Bolivia, native Festuca species are an important source of feed for animals due to their high tolerance to low temperatures and drought. Using simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs), the genetic diversity of 43 populations of Festuca species from Oruro, La Paz, Potosi and Cochabamba departments was evaluated for the purpose of providing information for effective conservation and breeding. In total, 64 alleles were detected across the 43 populations. SSR locus NFA 142 (with 12 alleles) had the highest number of detected alleles, while locus FES 13 (with eight alleles) had the highest polymorphism information content (PIC) at 0.55. Based on Nei's genetic distance between populations, the unweighted pair group method with arithmetic mean (UPGMA) cluster analysis revealed two major clusters, each consisting of populations from the four departments. However, the analysis of molecular variance (AMOVA) revealed that only 5% of the total variation separated these two groups, indicating low genetic differentiation between the populations. It was also found that there was a low but significant differentiation (0.08%) between the population groups of the four departments (p = 0.01). The newly developed EST-SSR markers are highly valuable for evaluating the genetic diversity of Bolivian fescues and other related species.


Asunto(s)
Festuca , Variación Genética , Animales , Variación Genética/genética , Festuca/genética , Bolivia , Fitomejoramiento , Repeticiones de Microsatélite/genética
9.
BMC Plant Biol ; 22(1): 293, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701757

RESUMEN

BACKGROUND: Better understanding of genetic structure of economic traits is crucial for identification and selection of superior genotypes in specific breeding programs. Best linear unbiased prediction (BLUP) is the most efficient method in this regard, which is poorly used in forage plant breeding. The present study aimed to assess genetic variation, estimate genetic parameters, and predict breeding values of five essential traits in full sib families (recognized by EST-SSR markers) of tall fescue using REML/BLUP procedure. METHOD: Forty-two full-sib families of tall fescue (included of 120 individual genotypes), recognized by EST-SSR markers along with twenty-one their corresponding parental genotypes were assessed for biomass production and agro-morphological traits at three harvests (spring, summer, and autumn) in the field during 4 years (2017-2020). RESULTS: Considerable genotypic variability was observed for all traits. Low narrow-sense heritability (h2n) for dry forage yield (DFY) at three harvest indicates that non-additive gene actions may play an important role in the inheritance of this trait. Higher h2n of yield related traits and flowering time and also significant genetic correlation of these traits with forage yield, suggests that selection based on these traits may lead to indirect genetic improvement of DFY. CONCLUSION: Our results showed the adequacy of REML/BLUP procedure for identification and selection of preferable parental genotypes and progenies with higher breeding values for future breeding programs such as variety development in tall fescue. Parental genotypes 21 M, 1 M, and 20 L were identified as superior and stable genotypes and could also produce the best hybrid combinations when they were mostly used as maternal parent.


Asunto(s)
Festuca , Lolium , Festuca/genética , Genotipo , Patrón de Herencia , Modelos Genéticos , Fenotipo , Fitomejoramiento , Selección Genética
10.
Sci Rep ; 12(1): 6500, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444199

RESUMEN

Nitric oxide (NO) has been proven to be involved in the regulation of many physiological processes in plants. Though the contribution of NO in plant response to drought has been demonstrated in numerous studies, this phenomenon remains still not fully recognized. The research presented here was performed to decipher the role of NO metabolism in drought tolerance and the ability to recover after stress cessation in two closely related species of forage grasses, important for agriculture in European temperate regions: Festuca arundinacea and F. glaucescens. In both species, two genotypes with distinct levels of drought tolerance were selected to compare their physiological reactions to simulated water deficit and further re-watering, combined with a simultaneous application of NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The results clearly indicated a strong relationship between scavenging of NO in leaves and physiological response of both analyzed grass species to water deficit and re-watering. It was revealed that NO generated under drought was mainly located in mesophyll cells. In plants with reduced NO level a higher photosynthetic capacity and delay in stomatal closure under drought, were observed. Moreover, NO scavenging resulted also in the increased membrane permeability and higher accumulation of ROS in cells of analyzed plants both under drought and re-watering. This phenomena indicate that lower NO level might reduce drought tolerance and the ability of F. arundinacea and F. glaucescens to recover after stress cessation.


Asunto(s)
Festuca , Lolium , Sequías , Festuca/genética , Lolium/genética , Óxido Nítrico/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Poaceae/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo
11.
Plant Biol (Stuttg) ; 24(5): 827-835, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35340125

RESUMEN

Substantial evidence is available on the capacity of particular strains of Epichloë fungal endophyte to remove the barriers of self-pollination in host grasses. We hypothesized that this might open up new methods to obtain inbred lines for specific turf hybrids and genetic studies. In the present study, we evaluated the first generation of self-pollination derived plants of endophyte infected clones (EIS1 ) from putative genotypes 75B+ and 75C+ and those from the first generation of self-pollination in six commercial tall fescue clones plus their hybrids with 75B- and 75C- for growth, seed yield and polyphenolic content as an index for biosynthesis of defence compounds under field conditions. The results showed that EIS1 had high hyphal density within leaf sheaths and higher growth and seed-related traits in at least one genotype. There were higher amounts of flavonoid and phenolic compounds (up to twofold) in both genotypes than in their hybrid counterparts and endophyte-free progeny. Selected genotypes within EIS1 contained significantly more chlorogenic acid, p-coumaric acid and rutin than the best non-infected genotypes. We conclude that phenotypic selection of individuals from the S1 population is feasible for improving fitness and stress resistance in novel inbred lines of tall fescue for development of new turf cultivars with the desired ecophysiological traits.


Asunto(s)
Epichloe , Festuca , Lolium , Endófitos/fisiología , Epichloe/fisiología , Festuca/genética , Festuca/microbiología , Lolium/genética , Lolium/microbiología , Semillas
12.
Plant Genome ; 15(2): e20199, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322562

RESUMEN

Tall fescue (Festuca arundinacea Schreb.) is a popular pasture and turf grass particularly known for drought resistance, allowing for its persistence in locations that are unfavorable for other cool-season grasses. Also, its seed-borne fungal symbiont (endophyte) Epichloë coenophiala, which resides in the crown and pseudostem, can be a contributing factor in its drought tolerance. Because it contains the apical meristems, crown survival under drought stress is critical to plant survival as well as the endophyte. In this study, we subjected tall fescue plants with their endophyte to water-deficit stress or, as controls with normal watering, then compared plant transcriptome responses in four vegetative tissues: leaf blades, pseudostem, crown, and roots. A transcript was designated a differentially expressed gene (DEG) if it exhibited at least a twofold expression difference between stress and control samples with an adjusted p value of .001. Pathway analysis of the DEGs across all tissue types included photosynthesis, carbohydrate metabolism, phytohormone biosynthesis and signaling, cellular organization, and a transcriptional regulation. While no specific pathway was observed to be differentially expressed in the crown, genes encoding auxin response factors, nuclear pore anchors, structural maintenance of chromosomes, and class XI myosin proteins were more highly differentially expressed in crown than in the other vegetative tissues, suggesting that regulation in expression of these genes in the crown may aid in survival of the meristems in the crown.


Asunto(s)
Festuca , Lolium , Endófitos/metabolismo , Festuca/genética , Festuca/microbiología , Lolium/genética , Poaceae/genética , Transcriptoma , Agua/metabolismo
13.
Methods Mol Biol ; 2464: 143-152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35258831

RESUMEN

Forage and turf grasses are widely grown and contribute significantly to sustainable agriculture. This chapter describes a protocol for protoplast transformation and plant regeneration for major forage and turf grass species, including tall fescue, red fescue, meadow fescue, perennial ryegrass, and Italian ryegrass. Embryogenic calli induced from caryopsis were used to establish embryogenic cell suspension cultures. Protoplasts were isolated from embryogenic suspension cultures and used for direct gene transfer. Chimeric genes were introduced into protoplasts by polyethylene glycol treatment. Upon selection with antibiotics or herbicide, resistant calli were obtained and transgenic plants were regenerated from these calli.


Asunto(s)
Festuca , Lolium , Festuca/genética , Lolium/genética , Plantas Modificadas Genéticamente/genética , Poaceae/genética , Protoplastos
14.
Mol Genet Genomics ; 297(2): 437-447, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35119503

RESUMEN

Tall fescue, a promising temperate forage grass of Himalayan region, possesses extraordinary property of rapid growth with high biomass production, but its poor digestibility due to higher lignin content limits its utilization in livestock feeding. The lignification in Tall fescue is under the control of enzymatic cascade of different regulatory enzymes. Cinnamyl alcohol dehydrogenase (CAD) is a crucial regulatory enzyme that catalyzes the last step of monolignol biosynthesis and is a potential candidate for altering the content and types of lignin, and hence increasing the digestibility of fodder crops. Hence, the present investigation was conducted on isolation, cloning and characterization of CAD gene from Tall fescue. Isolation and amplification of CAD gene resulted in an amplicon of 1521 bp. The CAD gene sequence was submitted to NCBI database with an accession number MW442831. Translation of the CAD gene sequence exhibited an ORF of 361 amino acids. The deduced CAD protein was predicted to be hydrophobic, acidic and thermally stable with molecular formula C1712H2734N460O520S23, molecular mass of 38.82 kDa, theoretical pI of 5.60 and 3 strong transmembrane helices. The CAD protein was predicted to have a dimer forming behavior with putative NAD(P) binding site between amino acids 48 and 301, putative substrate-binding site between amino acids 48 and 301, catalytic zinc-binding site between amino acids 48 and 164 and structural zinc-binding site between amino acid residue 101 and 115. A conserved 189GLGGVG194 motif is the binding site for NADP(H). The conserved motif pattern of CAD's zinc catalytic center was found to be 69GHEVVGEV(X)EVG(X)2V83. The zinc-binding site was found to be conserved between amino acid 89 and 115 and was found to be 89G(X)2VG(X)G(X)2VGXC(X)2C(X)2C(X)5QYC115. The deciphered sequence and putative protein information might be useful in subsequent research in lignin bioengineering for enhanced digestibility, biomass conversion as well as impact of lignin on cell wall mechanics.


Asunto(s)
Oxidorreductasas de Alcohol , Festuca , Proteínas de Plantas , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Clonación Molecular , Festuca/enzimología , Festuca/genética , Lignina , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Cell Physiol ; 63(3): 353-368, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34994787

RESUMEN

Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.


Asunto(s)
Festuca , Lolium , Sequías , Festuca/genética , Lolium/genética , Triglicéridos/metabolismo , Agua/metabolismo
16.
Physiol Plant ; 174(1): e13608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34837234

RESUMEN

Knowledge of the ability of plants to respond to climate change via phenotypic plasticity or genetic adaptation in ecophysiological traits and of the link of these traits to fitness is still limited. We studied the clonal grass Festuca rubra from 11 localities representing factorially crossed gradients of temperature and precipitation and cultivated them in growth chambers simulating temperature and moisture regime in the four extreme localities. We measured net photosynthetic rate, Fv /Fm , specific leaf area, osmotic potential and stomatal density and length and tested their relationship to proxies of fitness. We found strong phenotypic plasticity in photosynthetic traits and genetic differentiation in stomatal traits. The effects of temperature and moisture interacted (either as conditions of origin or growth chambers), as were effects of growth and origin. The relationships between the ecophysiological and fitness-related traits were significant but weak. Phenotypic plasticity and genetic differentiation of the species indicate the potential ability of F. rubra to adapt to novel climatic conditions. The most important challenge for the plants seems to be increasing moisture exposing plants to hypoxia. However, the plants have the potential to respond to increased moisture by changes in stomatal size and density and adjustments of osmotic potential. Changes in ecophysiological traits translate into variation in plant fitness, but the selection on the traits is relatively weak and depends on actual conditions. Despite the selection, the plants do not show strong local adaptation and local adaptation is thus likely not restricting species ability to adjust to novel conditions.


Asunto(s)
Festuca , Adaptación Fisiológica , Cambio Climático , Festuca/genética , Fenotipo , Hojas de la Planta/fisiología
17.
Chemosphere ; 289: 133253, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902388

RESUMEN

Phytoextraction by harvesting dead leaves is a novel cadmium (Cd) phytoremediation strategy in tall fescue (Festuca arundinacea), which provides feasibility for the phytoremediation of Cd-polluted soils and cleaner food production. The highest Cd in dead leaves is the result of Cd accumulation during the process of leaf senescence. However, it is not known the mechanism of Cd accumulation during the leaf senescence, which limits the phytoextraction efficiency of this technology. In this study, we found that the contents of phytochelatins (PC), glutathione (GSH), and non-protein thiols (NPT) were increased during the process of leaf senescence and Cd stress significantly promoted PC, GSH, and NPT. Transcriptome analysis showed that the pathway of glutathione metabolism was significantly enriched in the senescent leaf under Cd stress. 19 genes encoding GST, enzymes catalyzing GSH-Cd binding, were up-regulated in the senescent leaf. The increases of PC, GSH, and NPT in the senescent leaf for Cd-binding could be from the pathways of the protein degradation rather than their synthesis, because genes encoding cysteine protease (catalyzes protein degradation) were significantly promoted, but both GSH synthetase (GS) and PC synthetase (PCS) did not show the significant changes between the young and senescent leaves. Our results indicated that Cd accumulation during the leaf senescence could be the result of the promotion of Cd-binding by PC, GSH, and NPT, which provide insights into the regulatory mechanism and further genetic engineering to promote the phytoextraction efficiency by harvesting dead leaves in tall fescue.


Asunto(s)
Festuca , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Festuca/genética , Hojas de la Planta/química , Senescencia de la Planta , Contaminantes del Suelo/análisis
18.
Plant Physiol Biochem ; 170: 275-286, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929431

RESUMEN

Warm- and cool-season turfgrasses were originated from different locations with contrasting heat tolerance. The molecular mechanisms of heat tolerance have not been extensively studied in turfgrass species. In this study, transcriptomic analysis showed that bermudagrass was more tolerant to heat stress as evidenced by lower contents of H2O2, proline and glutathione than those in tall fescue after heat treatment. RNA sequencing analysis revealed that 32.7% and 17.7% more genes were changed in tall fescue than in bermudagrass after 2 and 12h heat treatment, respectively. GO terms of redox were enriched in bermudagrass whereas metabolite transportation ones were over-represented in tall fescue after 2h treatment. Ubiquitin dependent degradation pathways were commonly regulated in both grass species. CdF-box and FaF-box transgenic Arabidopsis exhibited improved tolerance to heat stress. Regulatory elements analysis revealed that four ABA-responsive elements present in CdF-box promoter, indicating CdF-box could be potentially regulated by ABRE binding factors (ABFs). All these findings provide evidences for understanding heat stress response in warm- and cool-season grass species.


Asunto(s)
Festuca , Transcriptoma , Festuca/genética , Respuesta al Choque Térmico , Peróxido de Hidrógeno , Estaciones del Año , Estrés Fisiológico
19.
Genes (Basel) ; 12(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208200

RESUMEN

Polyploidy has played an important evolutionary role in the genus Festuca (Poaceae), and several ploidy levels (ranging from 2n = 2x = 14 to 2n = 12x = 84) have been detected to date. This study aimed to estimate the genome size and ploidy level of two subspecies belonging to the F. yvesii polyploid complex by flow cytometry and chromosome counting. The phenotypic variation of the cytotypes was also explored, based on herbarium material. The genome size of F. yvesii subsp. lagascae has been estimated for the first time. Nuclear 2C DNA content of F. yvesii subsp. summilusitana ranged from 21.44 to 31.91 pg, while that of F. yvesii subsp. lagascae was from 13.60 to 22.31 pg. We report the highest ploidy level detected for Festuca (2n = 14x = 98) and previously unknown cytotypes. A positive correlation between holoploid genome size and chromosome number counts shown herein was confirmed. The morphometric approach showed a slight trend towards an increase in the size of some organs consistent with the variation in the ploidy level. Differences in characters were usually significant only among the most extreme cytotypes of each subspecies, but, even in this case, the high overlapping ranges prevent their distinction.


Asunto(s)
Festuca/genética , Tamaño del Genoma , Polimorfismo Genético , Poliploidía , Cromosomas de las Plantas/genética
20.
Ecotoxicol Environ Saf ; 223: 112568, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332250

RESUMEN

Tall fescue (Festuca arundinacea Schreb.) shows huge potential for lead (Pb) phytoremediation, while little is known on the molecular mechanisms involved in Pb tolerance and accumulation. Here, genetic engineering strategy was firstly used to investigate Pb tolerance and accumulation in tall fescue. The transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII was generated. After exposure to 1000 mg/L Pb(NO3)2, two FaHSP17.8-CII overexpressing lines, OE#3 and OE#7, showed higher tolerance to Pb as illustrated by the reduced levels of electrolyte leakage (EL) and malondialdehyde (MDA) as compared to the wild-type (WT) plants under Pb stress. Moreover, the FaHSP17.8-CII overexpression lines, OE#3 and OE#7, exhibited 36.3% and 46.6% higher shoot Pb accumulation relative to the WT grasses. When the grasses were exposed to Pb stress, the two OE lines had higher CAT, POD and SOD activities as compared to WT. Additionally, overexpression of FaHSP17.8-CII improved the synthesis of chlorophyll and transcript abundance of FapsbC, FapsbD and FapsbE, and alleviated the photoinhibition of PSII in tall fescue under Pb stress. This study provides an initial genetic engineering strategy to improve Pb phytoremediation efficiency in tall fescue by FaHSP17.8-CII overexpression.


Asunto(s)
Festuca , Lolium , Antioxidantes , Clorofila , Festuca/genética , Plomo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...