Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.047
Filtrar
1.
Physiol Plant ; 176(3): e14303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698659

RESUMEN

Cotton is an important cash crop for the textile industry. However, the understanding of natural genetic variation of fiber elongation in relation to miRNA is lacking. A miRNA gene (miR477b) was found to co-localize with a previously mapped fiber length (FL) quantitative trait locus (QTL). The miR477b was differentially expressed during fiber elongation between two backcross inbred lines (BILs) differing in FL and its precursor sequences. Bioinformatics and qRT-PCR analysis were further used to analyse the miRNA genes, which could produce mature miR477b. Cotton plants with virus-induced gene silencing (VIGS) constructs to over-express the allele of miR477b from the BIL with longer fibers had significantly longer fibers as compared with negative control plants, while the VIGS plants with suppressed miRNA expression had significantly shorter fibers. The expression level of the target gene (DELLA) and related genes (RDL1 and EXPA1 for DELLA through HOX3 protein) in the two BILs and/or the VIGS plants were generally congruent, as expected. This report represents one of the first comprehensive studies to integrate QTL linkage mapping and physical mapping of small RNAs with both small and mRNA transcriptome analysis, followed by VIGS, to identify candidate small RNA genes affecting the natural variation of fiber elongation in cotton.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , MicroARNs , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Gossypium/genética , Gossypium/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mapeo Cromosómico , Silenciador del Gen , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732993

RESUMEN

Information on boll distribution within a cotton plant is critical to evaluate the adaptation and response of cotton plants to environmental and biotic stress in cotton production. Cotton researchers have applied available conventional fiber measurements, such as the high volume instrument (HVI) and advanced fiber information system (AFIS), to map the location and the timing of boll development and distribution within plants and further to determine within-plant variability of cotton fiber properties. Both HVI and AFIS require numerous cotton bolls combined for the measurement. As an alternative approach, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was proposed to measure fiber maturity (MIR) and crystallinity (CIIR) of a sample as little as 0.5 mg lint. Extending fiber maturity and crystallinity measurement into a single boll for node-by-node mapping, FT-IR method might be advantageous due to less sampling amount compared with HVI and AFIS methods. Results showed that FT-IR technique enabled the evaluation of fiber MIR and CIIR at a boll level, which resulted in average MIR and CIIR values highly correlated with HVI micronaire (MIC) and AFIS maturity ratio (M). Hence, FT-IR technique possesses a good potential for a rapid and non-destructive node-by-node mapping of cotton boll maturity and crystallinity distribution.


Asunto(s)
Algoritmos , Fibra de Algodón , Gossypium , Fibra de Algodón/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Gossypium/química , Gossypium/crecimiento & desarrollo
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732136

RESUMEN

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , Lignina , Proteínas de Plantas , Lignina/biosíntesis , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Pared Celular/genética , Celulosa/biosíntesis , Celulosa/metabolismo , Vías Biosintéticas
4.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634234

RESUMEN

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Asunto(s)
Celulosa , Celulosa/química , Fibra de Algodón , Cromatografía en Gel/métodos
5.
Int J Biol Macromol ; 266(Pt 2): 131345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574935

RESUMEN

Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.


Asunto(s)
Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Gossypium , ARN no Traducido , Fibra de Algodón , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Gossypium/genética , Gossypium/metabolismo , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transcriptoma
6.
Int J Biol Macromol ; 267(Pt 1): 131437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614186

RESUMEN

Improving the durability of wear-resistant superhydrophobic surfaces is crucial for their practical use. To tackle this, research is now delving into self-healing superhydrophobic surfaces. In our study, we developed superhydrophobic cotton fabrics by embedding nano-silica particles, micro-silica powder, and polydimethylsiloxane (PDMS) using a dipping method. This innovative design grants the SiO2/PDMS cotton fabric remarkable superhydrophobicity, reflected by a water contact angle of 155°. Moreover, the PDMS was stored in the amorphous areas of cellulose of cotton fabrics, attaching to the fiber surface and playing a role in connecting micro-blocks and nano-particles. This causes a self-diffusion of PDMS molecules in these fabrics, allowing the surface to regain its superhydrophobicity even after abrasion damage. Impressively, this self-healing property can be renewed at least 8 times, showcasing the fabric's resilience. Moreover, these superhydrophobic cotton fabrics exhibit outstanding self-cleaning abilities and repel various substances such as blood, milk, cola, and tea. This resilience, coupled with its simplicity, low cost-effectiveness, and eco-friendliness, makes this coating highly promising for applications across construction, chemical, and medical fields. Our study also delves into understanding the self-healing mechanism of the SiO2/PDMS cotton fabric, offering insights into their long-term performance and potential advancements in this field.


Asunto(s)
Fibra de Algodón , Interacciones Hidrofóbicas e Hidrofílicas , Dióxido de Silicio , Dióxido de Silicio/química , Dimetilpolisiloxanos/química , Nanopartículas/química , Propiedades de Superficie , Textiles , Tamaño de la Partícula
7.
Int J Biol Macromol ; 267(Pt 1): 131323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574912

RESUMEN

Sphingolipids serve as essential components of biomembrane and possess significant bioactive properties. Sphingosine-1-phophate (S1P) plays a key role in plant resistance to stress, but its specific impact on plant growth and development remains to be fully elucidated. Cotton fiber cells are an ideal material for investigating the growth and maturation of plant cells. In this study, we examined the content and composition of sphingosine (Sph) and S1P throughout the progression of fiber cell development. The content of S1P elevated gradually during fiber elongation but declined during the transition stage. Exogenous application of S1P promoted fiber elongation while using of FTY720 (an antagonist of S1P), and DMS (an inhibitor of LCBK) hindered fiber elongation. Cotton Long Chain Base Kinase 1 (GhLCBK1) was notably expressed during the fiber elongation stage, containing all conserved domains of LCBK protein and localized in the endoplasmic reticulum. Overexpression GhLCBK1 increased the S1P content and promoted fiber elongation while retarded secondary cell wall (SCW) deposition. Conversely, downregulation of GhLCBK1 reduced the S1P levels, and suppressed fiber elongation, and accelerated SCW deposition. Transcriptome analysis revealed that upregulating GhLCBK1 or applying S1P induced the expression of GhEXPANSIN and auxin related genes. Furthermore, the levels of IAA were elevated and reduced in the fibers when up-regulating or down-regulating GhLCBK1, respectively. Our investigation demonstrated that GhLCBK1 and its product S1P facilitated the elongation of fiber cells by affecting auxin biosynthesis. This study contributes novel insights into the intricate regulatory pathways involved in fiber cell elongation, identifying GhLCBK1 as a potential target gene and laying the groundwork for enhancing fiber quality via genetic manipulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Ácidos Indolacéticos , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lisofosfolípidos/metabolismo , Fibra de Algodón , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos
8.
Int J Biol Macromol ; 267(Pt 2): 131461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599424

RESUMEN

Recycling and high-value reutilization of waste cotton fabrics (WCFs) has attracted a widespread concern. One potential solution is to extract nanocellulose. Sulfuric acid hydrolysis is a conventional method for the production of nanocellulose with high negative charge from WCFs. However, the recycling and disposal of chemicals in nanocellulose production, along with low yields, remain significant challenges. Consequently, there is a pressing need for a sustainable method to produce nanocellulose at higher yield without the use of chemicals. Herein, we propose a green, sustainable and chemical-free method to extract nanocellulose from WCFs. The nanocellulose displayed a rod-like shape with a length of 50-300 nm, a large aspect ratio of 18.4 ± 2 and the highest yield of up to 89.9 %. The combined short-time and efficient two-step process, involving electron beam irradiation (EBI) and high-pressure homogenization (HPH), offers a simple and efficient alternative approach with a low environmental impact, to extract nanocellulose. EBI induced a noticeable degradation in WCFs and HPH exfoliated cellulose to nano-size with high uniformity via mechanical forces. The as-prepared nanocellulose exhibits excellent emulsifying ability as the Pickering emulsion emulsifier. This work provides a facile and efficient approach for nanocellulose fabrication as well as a sustainable way for recycle and reutilization of the waste cotton fabrics.


Asunto(s)
Celulosa , Fibra de Algodón , Celulosa/química , Electrones , Tecnología Química Verde/métodos , Hidrólisis
9.
Int J Biol Macromol ; 267(Pt 2): 131486, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604420

RESUMEN

The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.


Asunto(s)
Antibacterianos , Fibra de Algodón , Escherichia coli , Staphylococcus aureus , Textiles , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Silanos/química
10.
Sci Rep ; 14(1): 7723, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565894

RESUMEN

Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.


Asunto(s)
Fibra de Algodón , Gossypium , Fitomejoramiento , Cruzamientos Genéticos , Egipto , Gossypium/genética , Fenotipo , Sitios de Carácter Cuantitativo
11.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580674

RESUMEN

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Humanos , Plata/química , Fibra de Algodón , Ácido Succínico , Nanopartículas del Metal/química , Textiles , Antibacterianos/farmacología , Antibacterianos/química
12.
Mol Genet Genomics ; 299(1): 38, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517563

RESUMEN

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Asunto(s)
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Fibra de Algodón , Sitios de Carácter Cuantitativo/genética , Fenotipo , Celulosa
13.
Chemosphere ; 355: 141703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490609

RESUMEN

The wettability of the surface of hydrophilic cotton fabrics was modified using a one-step protocol with tannic acid (TA) to provide its excess catechol groups to be grafted with 1-eicosanamine at pH 8.5 and room temperature with catalysts CuSO4/H2O2. The modification over the synthesis conditions revised the contact angles of water and diiodomethane droplets from 132.68 ± 0.49° to 143.95 ± 0.80° and from 100.08°±1.42° to 82.96 ± 1.38°, respectively. The corresponding dispersive of the so-yielded cotton surface ranged from 8.6 to 16.0 mJ/m2, and the polar components ranged from 0.08 to 2.7 mJ/m2, much lower than polytetrafluoroethylene. The modified cotton fabrics are omniphobic and can repel water and commercial oil products. The absorption tests revealed that the modified cotton fabrics absorbed 1.10 g hexane/g cotton by contacting hexane (top)-water (bottom) layers and absorbed 1.26 g hexane/g cotton by contacting water first for 30 s, then hexane for another 30 s. The modified fabrics reveal good absorption reusability as hexane absorbent is even pre-saturated with water. This conclusion is also valid for commercial unleaded gasoline #95 and diesel. A parametric study revealed that the added catalysts and prolonged reaction time would enhance the hydrophobicity of the surface. These modified cotton fabrics can absorb oil from water and oil spills. Mechanisms corresponding to this observation are discussed.


Asunto(s)
Fibra de Algodón , Hexanos , Polifenoles , Peróxido de Hidrógeno
14.
Int J Biol Macromol ; 265(Pt 1): 130929, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508548

RESUMEN

The construction of Janus structures on cotton fabrics can endow the fabrics with dynamic multifunctional properties. However, because of the large pores between fabric fibers, the formation of Janus structures by grafting different functional coatings on the double surfaces of cotton fabrics via dipping technology is difficult. To construct Janus structures on cotton fabrics, mist polymerization and "grafting-through" polymerization technologies were used to graft polylauryl methacrylate and a heat-shrinkable thermosensitive antibacterial polymer on the inside and outside surfaces of the cotton fabric, respectively. The as-formed Janus cotton fabric demonstrated excellent antibacterial durability. Even after subjecting the Janus fabric to 70 laundering cycles, its bacterial rates against Escherichia coli and Staphylococcus aureus were > 93.0 %. Compared with the pristine cotton fabric, when the ambient temperature is high or low, the Janus fabric can adjust the skin temperature within 5 min by approximately ±3.0 °C. Additionally, the fabric exhibited excellent waterproof and moisture permeability properties. The Janus cotton fabrics prepared by the proposed strategy possess significant potential for applications in the field of wearable textiles.


Asunto(s)
Fibra de Algodón , Nanopartículas del Metal , Plata/química , Polimerizacion , Nanopartículas del Metal/química , Textiles/microbiología , Antibacterianos/química , Escherichia coli
15.
ACS Appl Mater Interfaces ; 16(12): 14595-14604, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38469717

RESUMEN

Herein, we report the preparation of bifunctional silica nanoparticles by covalent attachment of both an anti-inflammatory drug (ibuprofen) and an antibiotic (levofloxacin or norfloxacin) through amide groups. We also describe the coating of cotton fabrics with silica nanoparticles containing both ibuprofen and norfloxacin moieties linked by amide groups by using a one-step coating procedure under ultrasonic conditions. The functionalized nanoparticles and cotton fabrics have been characterized using spectroscopic and microscopic techniques. The functionalized nanoparticles and textiles have been treated with model proteases for the in situ release of the drugs by the amide bond enzymatic cleavage. Topical dermal applications in medical bandages are expected, which favor wound healing.


Asunto(s)
Nanopartículas , Norfloxacino , Dióxido de Silicio/química , Ibuprofeno/farmacología , Fibra de Algodón , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Textiles , Cicatrización de Heridas , Antiinflamatorios/química , Amidas
16.
Int J Biol Macromol ; 264(Pt 2): 130779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471604

RESUMEN

Regenerated cellulose fibers has attracted increasing attention for high-grade textile raw materials and industrial textiles, but the low mechanical property caused by differences in regenerated raw materials and production levels limits its commercial application in the product diversity. Herein, we proposed a novel triple-crosslinking strategy by coupling with hydrogen bonds, chemical crosslinking, and internal mineralization from multiple pulsed vapor phase infiltration (MPI) to improve the mechanical performance of regenerated cellulose fibers. A binary solvent composed of ionic liquid (IL) and dimethyl sulfoxide (DMSO) is used to dissolve waste cotton textile and then wet spinning. Dual-crosslinking is firstly achieved by coupling glutaraldehyde (GA) and cellulose reaction. Subsequently, a metal oxide is intentionally infiltrated into inner cellulosic through MPI technology to form a third form of crosslinking, accompanied by the ultra-thin metal oxide nano-layer onto the surface of regenerated cellulose fibers. Results showed that the triple-crosslinking strategy has increased the tensile stress of the fiber by 43.57 % to 287.03 MPa. In all, triple-crosslinking strategy provides a theoretical basis and technical approach for the reinforcement of weak fibers in waste cotton recycling, which is expected to accelerate the development of the waste textile recycling industry and promote of the added-value of regenerated products.


Asunto(s)
Fibra de Algodón , Textiles , Celulosa/química , Óxidos
17.
Int J Biol Macromol ; 264(Pt 1): 130596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447823

RESUMEN

This study introduces a novel approach to develop a multifunctional coating on cotton fabric, emphasizing the utilization of cotton fiber as a biological macromolecule, by integrating a TiO2@g-C3N4 layered structure to confer superhydrophobic properties and multiple functionalities. The engineered structure not only enhances fabric roughness but also incorporates non-fluoro hydrophobic agents, thereby imparting diverse capabilities such as photocatalysis, oil-water separation, and self-cleaning to the cotton substrate. Fabrication of the TiO2@g-C3N4 layered structure involved ultrasonic dispersion of TiO2 and g-C3N4, subsequently deposited onto cotton fabric. Sequential hydrophobic treatment with polydimethylsiloxane (PDMS) and isophorone diisocyanate (IPDI) achieved superhydrophobicity, exhibiting an exceptional water contact angle (WCA) of 157.9°. Comprehensive characterization via scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric validated the composite's structural and chemical properties. The introduced TiO2@g-C3N4 structure significantly enhanced fabric roughness, while PDMS treatment lowered surface energy and IPDI hydrolysis facilitated cross-linking, ensuring durability. The resultant TiO2@g-C3N4/PDMS cotton exhibited outstanding self-cleaning properties and demonstrated oil adsorption capacity, accommodating both heavy and light oils. Notably, this superhydrophobic cotton efficiently separated water-oil mixtures, achieving 96.8 % efficiency even after 10 cycles. Moreover, under simulated light, it displayed outstanding photocatalytic degradation (93.2 %) of methylene blue while maintaining a WCA of 150° post-degradation, highlighting sustained functionality. This innovation holds promise for sustainable applications, offering robust physical and chemical durability within the realm of biological macromolecules. The amalgamation of TiO2@g-C3N4 layered structure and PDMS treatment on cotton fabric underscores a sustainable approach to address water-oil separation challenges and enable efficient self-cleaning. This research demonstrates a significant step towards sustainable material applications and addresses pertinent real-world challenges in diverse technological domains.


Asunto(s)
Fibra de Algodón , Agua , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Interacciones Hidrofóbicas e Hidrofílicas , Aceites
18.
Int J Biol Macromol ; 267(Pt 1): 129256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493823

RESUMEN

In the present study, the commercially available three different fabrics cotton, nylon and cotton/nylon were modified by chitosan and silver nanoparticles using a crosslinker triethyl orthoformate (TEOF). Resulted cotton­silver (Ag-Cs-Cot), nylon­silver (Ag-Cs-Nyl) and cotton-nylon silver (Ag-Cs-Cot-Nyl) fabrics showed significant anti-bacterial activity even after 50 washing cycles. Silver nanoparticles were prepared by reducing silver nitrate through sodium borohydride at 0 °C. In FTIR spectra the peak at near 1650 cm-1 confirmed that TEOF mediated attachment of chitosan with fabrics (due to C=N) and the stretching of secondary amine near the 3375 cm-1 indicated the silver attachment to the amine group of the chitosan. In Scanning Electron Microscope (SEM) images smooth surfaces of fabrics without any damage by modification process were observed. The antibacterial activity was Analyzed by agar diffusion and broth dilution assays against Escherichia coli and Staphylococcus aureus bacterial strains and results showed 90% bacterial inhibition against E. coli and 89% bacterial inhibition against S. aureus. For testing the antibacterial durability, the modified fabrics were washed with non-ionic detergent (10g/l) for 15 minutes under aggressive stirring (100 rpm) at room temperature. The modified fabrics retained antibacterial activity over the 50 washing cycles. Finally, the commercial potential of cotton-silver fabric was evaluated by stitching it with the socks of football players and interestingly results showed that the modified fabric on the socks showed more than 90% bacterial inhibition as compared to the plain fabric after 70 minutes of playing activity.


Asunto(s)
Antibacterianos , Quitosano , Fibra de Algodón , Escherichia coli , Nanopartículas del Metal , Nylons , Plata , Staphylococcus aureus , Textiles , Quitosano/química , Quitosano/farmacología , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Nylons/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Formiatos/química
19.
Int J Biol Macromol ; 262(Pt 2): 130144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360228

RESUMEN

The phosphoramide phosphorus ester phosphate ammonium (PPEPA) flame retardant was synthesized by phosphorus oxychloride and ethanolamine, and its structure was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). Cotton textiles treated with 20 wt% PPEPA (CT-PPEPA3) would have high durability and flame retardance. The limiting oxygen index (LOI) of CT-PPEPA3 was found to be 46.5 %, while after undergoing 50 laundering cycles (LCs) following the AATCC 61-2013 3 A standard, the LOI only decreased to 31.4 %. Scanning electron microscopy and X-ray diffraction analyses suggested the penetration of PPEPA molecules into the interior of cotton fibers, resulting in a minor alteration of the cellulose crystal structure. The excellent durability, FTIR, and energy-dispersive X-ray of CT-PPEPA3 provided evidence for the formation of -N-P(=O)-O-C- and -O-P(=O)-O-C- covalent bonds between the PPEPA molecules and cellulose. The -N-P(=O)-O-C- bond exhibited a p-π conjugation effect, leading to enhanced stability and improved durability of the flame-retardant cotton textiles. Vertical flame, thermogravimetric, and cone calorimetry tests demonstrated that the CT-PPEPA3 underwent condensed-phase and synergistic flame retardation. Additionally, these finished cotton textiles retained adequate breaking strength and softness, making them suitable for various applications. In conclusion, the incorporation of the -N-P(=O)-ONH4 group into the phosphorus ester phosphate ammonium flame retardant demonstrated effective enhancement of the fire resistance and durability of treated cotton textiles.


Asunto(s)
Compuestos de Amonio , Retardadores de Llama , Fósforo , Fosfatos , Fosforamidas , Textiles , Fibra de Algodón , Celulosa
20.
J Proteomics ; 297: 105130, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401592

RESUMEN

Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.


Asunto(s)
Germinación , Gossypium , Gossypium/genética , Proteómica , Semillas , Fenotipo , Fibra de Algodón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...