Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.197
Filtrar
1.
Elife ; 122024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695862

RESUMEN

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones Noqueados , Contracción Muscular , Proteínas del Tejido Nervioso , Sarcómeros , Septinas , Animales , Septinas/metabolismo , Septinas/genética , Sarcómeros/metabolismo , Ratones , Contracción Muscular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
2.
Acta Biomater ; 180: 279-294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604466

RESUMEN

The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.


Asunto(s)
Tendones , Tenocitos , Ingeniería de Tejidos , Humanos , Tendones/citología , Tendones/fisiología , Ingeniería de Tejidos/métodos , Tenocitos/citología , Tenocitos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Modelos Biológicos , Técnicas de Cocultivo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Unión Miotendinosa
3.
Exp Gerontol ; 190: 112423, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608790

RESUMEN

Aging is associated with impaired strength and power during isometric and shortening contractions, however, during lengthening (i.e., eccentric) contractions, strength is maintained. During daily movements, muscles undergo stretch-shortening cycles (SSCs). It is unclear whether the age-related maintenance of eccentric strength offsets age-related impairments in power generation during SSCs owing to the utilization of elastic energy or other cross-bridge based mechanisms. Here we investigated how aging influences SSC performance at the single muscle fibre level and whether performing active lengthening prior to shortening protects against age-related impairments in power generation. Single muscle fibres from the psoas major of young (∼8 months; n = 31 fibres) and old (∼32 months; n = 41 fibres) male F344BN rats were dissected and chemically permeabilized. Fibres were mounted between a force transducer and length controller and maximally activated (pCa 4.5). For SSCs, fibres were lengthened from average sarcomere lengths of 2.5 to 3.0 µm and immediately shortened back to 2.5 µm at both fast and slow (0.15 and 0.60 Lo/s) lengthening and shortening speeds. The magnitude of the SSC effect was calculated by comparing work and power during shortening to an active shortening contraction not preceded by active lengthening. Absolute isometric force was ∼37 % lower in old compared to young rat single muscle fibres, however, when normalized to cross-sectional area (CSA), there was no longer a significant difference in isometric force between age groups, meanwhile there was an ∼50 % reduction in absolute power in old as compared with young. We demonstrated that SSCs significantly increased power production (75-110 %) in both young and old fibres when shortening occurred at a fast speed and provided protection against power-loss with aging. Therefore, in older adults during everyday movements, power is likely 'protected' in part due to the stretch-shortening cycle as compared with isolated shortening contractions.


Asunto(s)
Envejecimiento , Fibras Musculares Esqueléticas , Ratas Endogámicas F344 , Animales , Masculino , Envejecimiento/fisiología , Fibras Musculares Esqueléticas/fisiología , Ratas , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Contracción Isométrica/fisiología , Sarcómeros/fisiología , Ratas Endogámicas BN , Músculos Psoas/fisiología
4.
J Biomech ; 167: 112089, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608614

RESUMEN

Skeletal muscles are complex structures with nonlinear constitutive properties. This complexity often requires finite element (FE) modeling to better understand muscle behavior and response to activation, especially the fiber strain distributions that can be difficult to measure in vivo. However, many FE muscle models designed to study fiber strain do not include force-velocity behavior. To investigate force-velocity property impact on strain distributions within skeletal muscle, we modified a muscle constitutive model with active and passive force-length properties to include force-velocity properties. We implemented the new constitutive model as a plugin for the FE software FEBio and applied it to four geometries: 1) a single element, 2) a multiple-element model representing a single fiber, 3) a model of tapering fibers, and 4) a model representing the bicep femoris long head (BFLH) morphology. Maximum fiber velocity and boundary conditions of the finite element models were varied to test their influence on fiber strain distribution. We found that force-velocity properties in the constitutive model behaved as expected for the single element and multi-element conditions. In the tapered fiber models, fiber strain distributions were impacted by changes in maximum fiber velocity; the range of strains increased with maximum fiber velocity, which was most noted in isometric contraction simulations. In the BFLH model, maximum fiber velocity had minimal impact on strain distributions, even in the context of sprinting. Taken together, the combination of muscle model geometry, activation, and displacement parameters play a critical part in determining the magnitude of impact of force-velocity on strain distribution.


Asunto(s)
Músculos Isquiosurales , Contracción Muscular , Contracción Muscular/fisiología , Simulación por Computador , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Fibras Musculares Esqueléticas/fisiología , Modelos Biológicos
5.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651653

RESUMEN

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Asunto(s)
Senescencia Celular , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Masculino , Femenino , Persona de Mediana Edad , Senescencia Celular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Biomarcadores/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Adulto , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/inervación
6.
J Neurol Sci ; 460: 123021, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653115

RESUMEN

BACKGROUND: Late-onset Pompe disease (LOPD) patients may still need ventilation support at some point of their disease course, despite regular recombinant human alglucosidase alfa treatment. This suggest that other pathophysiological mechanisms than muscle fibre lesion can contribute to the respiratory failure process. We investigate through neurophysiology whether spinal phrenic motor neuron dysfunction could contribute to diaphragm weakness in LOPD patients. MATERIAL AND METHODS: A group of symptomatic LOPD patients were prospectively studied in our centre from January 2022 to April 2023. We collected both demographic and clinical data, as well as neurophysiological parameters. Phrenic nerve conduction studies and needle EMG sampling of the diaphragm were perfomed. RESULTS: Eight treated LOPD patients (3 males, 37.5%) were investigated. Three patients (37.5%) with no respiratory involvement had normal phrenic nerve motor responses [median phrenic compound muscle action potential (CMAP) amplitude of 0.49 mV; 1st-3rd interquartile range (IQR), 0.48-0.65]. Those with respiratory failure (under nocturnal non-invasive ventilation) had abnormal phrenic nerve motor responses (median phrenic CMAP amplitude of 0 mV; 1st-3rd IQR, 0-0.15), and were then investigated with EMG. Diaphragm needle EMG revealed both myopathic and neurogenic changes in 3 (60%) and myopathic potentials in 1 patient. In the last one, no motor unit potentials could be recruited. CONCLUSIONS: Our study provide new insights regarding respiratory mechanisms in LOPD, suggesting a contribution of spinal phrenic motor neuron dysfunction for diaphragm weakness. If confirmed in further studies, our results recommend the need of new drugs crossing the blood-brain barrier.


Asunto(s)
Diafragma , Electromiografía , Enfermedad del Almacenamiento de Glucógeno Tipo II , Neuronas Motoras , Debilidad Muscular , Nervio Frénico , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Masculino , Diafragma/fisiopatología , Femenino , Persona de Mediana Edad , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología , Nervio Frénico/fisiopatología , Neuronas Motoras/fisiología , Neuronas Motoras/patología , Adulto , Conducción Nerviosa/fisiología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Anciano , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/fisiopatología , Estudios Prospectivos , Potenciales de Acción/fisiología
7.
Comput Biol Med ; 175: 108488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653066

RESUMEN

BACKGROUND AND OBJECTIVE: Aging is associated with a reduction in muscle performance, but muscle weakness is characterized by a much greater loss of force loss compared to mass loss. The aim of this work is to assess the contribution of the extracellular matrix (ECM) to the lateral transmission of force in humans and the loss of transmitted force due to age-related modifications. METHODS: Finite element models of muscle bundles are developed for young and elderly human subjects, by considering a few fibers connected through an ECM layer. Bundles of young and elderly subjects are assumed to differ in terms of ECM thickness, as observed experimentally. A three-element-based Hill model is adopted to describe the active behavior of muscle fibers, while the ECM is modeled assuming an isotropic hyperelastic neo-Hookean constitutive formulation. Numerical analyses are carried out by mimicking, at the scale of a bundle, two experimental protocols from the literature. RESULTS: When comparing numerical results obtained for bundles of young and elderly subjects, a greater reduction in the total transmitted force is observed in the latter. The loss of transmitted force is 22 % for the elderly subjects, while it is limited to 7.5 % for the young subjects. The result for the elderly subjects is in line with literature studies on animal models, showing a reduction in the range of 20-34 %. This can be explained by an alteration in the mechanism of lateral force transmission due to the lower shear stiffness of the ECM in elderly subjects, related to its higher thickness. CONCLUSIONS: Computational modeling allows to evaluate at the bundle level how the age-related increase of the ECM amount between fibers affects the lateral transmission of force. The results suggest that the observed increase in ECM thickness in aging alone can explain the reduction of the total transmitted force, due to the impaired lateral transmission of force of each fiber.


Asunto(s)
Envejecimiento , Matriz Extracelular , Análisis de Elementos Finitos , Modelos Biológicos , Humanos , Matriz Extracelular/fisiología , Envejecimiento/fisiología , Anciano , Adulto , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Fenómenos Biomecánicos/fisiología , Masculino
8.
J Vis Exp ; (205)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526119

RESUMEN

As the final connection between the nervous system and muscle, transmission at the neuromuscular junction (NMJ) is crucial for normal motor function. Single fiber electromyography (SFEMG) is a clinically relevant and sensitive technique that measures single muscle fiber action potential responses during voluntary contractions or nerve stimulations to assess NMJ transmission. The assessment and quantification of NMJ transmission involves two parameters: jitter and blocking. Jitter refers to the variability in timing (latency) between consecutive single-fiber action potentials (SFAPs). Blocking signifies the failure of NMJ transmission to initiate an SFAP response. Although SFEMG is a well-established and sensitive test in clinical settings, its application in preclinical research has been relatively infrequent. This report outlines the steps and criteria employed in performing stimulated SFEMG to quantify jitter and blocking in rodent models. This technique can be used in preclinical and clinical studies to gain insights into NMJ function in the context of health, aging, and disease.


Asunto(s)
Fibras Musculares Esqueléticas , Roedores , Animales , Electromiografía/métodos , Fibras Musculares Esqueléticas/fisiología , Unión Neuromuscular/fisiología , Transmisión Sináptica
9.
Physiol Rep ; 12(6): e15953, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490811

RESUMEN

This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Cuádriceps , Ejercicio Físico/fisiología , Terapia por Ejercicio , Fuerza Muscular
10.
Exp Physiol ; 109(4): 549-561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461483

RESUMEN

Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%-53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.


Asunto(s)
Envejecimiento , Fibras Musculares Esqueléticas , Humanos , Anciano , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular , Músculo Cuádriceps , Terapia por Ejercicio , Músculo Esquelético
11.
J Exp Biol ; 227(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357776

RESUMEN

A skeletal muscle's peak force production and excursion are based on its architectural properties that are, in turn, determined by its mass, muscle fiber length and physiological cross-sectional area (PCSA). In the classic interspecific study of mammalian muscle scaling, it was demonstrated that muscle mass scales positively allometrically with body mass whereas fiber length scales isometrically with body mass, indicating that larger mammals have stronger leg muscles than they would if they were geometrically similar to smaller ones. Although this relationship is highly significant across species, there has never been a detailed intraspecific architectural scaling study. We have thus created a large dataset of 896 muscles across 34 human lower extremities (18 females and 16 males) with a size range including approximately 90% and 70% of the United States population height and mass, respectively, across the range 36-103 years. Our purpose was to quantify the scaling relationships between human muscle architectural properties and body size. We found that human muscles depart greatly from isometric scaling because muscle mass scales with body mass1.3 (larger exponent than isometric scaling of 1.0) and muscle fiber length scales with negative allometry with body mass0.1 (smaller exponent than isometric scaling of 0.33). Based on the known relationship between architecture and function, these results suggest that human muscles place a premium on muscle force production (mass and PCSA) at the expense of muscle excursion (fiber length) with increasing body size, which has implications for understanding human muscle design as well as biomechanical modeling.


Asunto(s)
Pierna , Músculo Esquelético , Humanos , Animales , Masculino , Femenino , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Tamaño Corporal , Mamíferos , Extremidad Inferior
12.
Anim Sci J ; 95(1): e13915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38303133

RESUMEN

The aim of this study was to investigate the muscle fiber types and meat quality in four populations and estimate the heritability and correlation coefficients of those traits in Shanxia long black pig (SX). In this study, a total of 318 pigs were recorded for 16 traits of the muscle fiber types and meat quality in four populations, including 256 individuals from the new breed SX. The population had a significant effect on all recorded traits, and the meat quality of the Lulai black pig was better than the remaining populations. The heritability (h2 ) of meat quality traits was from 0.06 (pH at 24 h) to 0.47 (shearing force), and the muscle fiber types belonged to the traits with low to medium heritability. The density of total fiber had the highest h2 (0.40), while the percentage of type IIA had the lowest h2 (0.04). Most traits are phenotypically correlated with each other, but only a small proportion of traits are genetically correlated with each other. None fiber type genetically correlated with meat quality significantly, because the genetic correlation coefficients had large standard errors. These results provided some insights into genetic improvements for the meat quality in pig breeds and also indicated that the parameters of muscle fiber characteristics can explain parts of the variation in meat quality.


Asunto(s)
Carne , Fibras Musculares Esqueléticas , Humanos , Porcinos/genética , Animales , Fibras Musculares Esqueléticas/fisiología , Fenotipo , Carne/análisis , Cruzamiento
13.
Sci Rep ; 14(1): 3108, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326394

RESUMEN

TRUEFAD (TRUE Fiber Atrophy Distinction) is a bioimagery user-friendly tool developed to allow consistent and automatic measurement of myotube diameter in vitro, muscle fiber size and type using rodents and human muscle biopsies. This TRUEFAD package was set up to standardize and dynamize muscle research via easy-to-obtain images run on an open-source plugin for FIJI. We showed here both the robustness and the performance of our pipelines to correctly segment muscle cells and fibers. We evaluated our pipeline on real experiment image sets and showed consistent reliability across images and conditions. TRUEFAD development makes possible systematical and rapid screening of substances impacting muscle morphology for helping scientists focus on their hypothesis rather than image analysis.


Asunto(s)
Fibras Musculares Esqueléticas , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Fibras Musculares Esqueléticas/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Técnicas de Cultivo de Célula
14.
J Anat ; 244(5): 882-886, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38185737

RESUMEN

Fibre typing by immunohistochemistry on cryosections from human skeletal muscle biopsies is an essential tool in the diagnosis and research of muscular diseases, ageing, and responses to exercise training and disuse. Preserving a good quality in these frozen specimens can be challenging especially if they are stored for longer periods before histological processing, which is often the case in studies with a large number of test subjects and/or repeated sampling separated by multiple years. We demonstrate in this article that both, the morphology and reactivity of epitopes to myosin heavy chain isoforms and dystrophin are well preserved in up to 18-year-stored unfixed and unstained cryosections of human m. vastus lateralis (n = 241). Any variation in staining intensity between samples was unrelated to the age of the biopsy donor or the storage period of the unstained cryosections, and in all cases, the obtained images were appropriate for image analysis, such as the determination of the fibre type composition and the fibre cross-sectional area, and quantitative analysis of muscle capillarisation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Cuádriceps , Humanos , Fibras Musculares Esqueléticas/fisiología , Epítopos , Cadenas Pesadas de Miosina , Envejecimiento , Músculo Esquelético/fisiología
15.
J R Soc Interface ; 21(210): 20230603, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228184

RESUMEN

Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube-myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.


Asunto(s)
Fibras Musculares Esqueléticas , Mioblastos , Ratones , Animales , Teorema de Bayes , Fibras Musculares Esqueléticas/fisiología , Diferenciación Celular , Medios de Cultivo/farmacología , Músculo Esquelético/fisiología , Células Cultivadas
16.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38261271

RESUMEN

The nuclear lamina (NL) plays various roles and participates in nuclear integrity, chromatin organization, and transcriptional regulation. Lamin proteins, the main components of the NL, form a homogeneous meshwork structure under the nuclear envelope. Lamins are essential, but it is unknown whether their homogeneous distribution is important for nuclear function. Here, we found that PIGB, an enzyme involved in glycosylphosphatidylinositol (GPI) synthesis, is responsible for the homogeneous lamin meshwork in Drosophila. Loss of PIGB resulted in heterogeneous distributions of B-type lamin and lamin-binding proteins in larval muscles. These phenotypes were rescued by expression of PIGB lacking GPI synthesis activity. The PIGB mutant exhibited changes in lamina-associated domains that are large heterochromatic genomic regions in the NL, reduction of nuclear stiffness, and deformation of muscle fibers. These results suggest that PIGB maintains the homogeneous meshwork of the NL, which may be essential for chromatin distribution and nuclear mechanical properties.


Asunto(s)
Proteínas de Drosophila , Drosophila , Músculo Esquelético , Lámina Nuclear , Animales , Lamina Tipo B/genética , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Lámina Nuclear/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Glicosilfosfatidilinositoles/metabolismo
17.
Biophys J ; 123(5): 555-571, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38291752

RESUMEN

Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single, skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single-molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force after stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.


Asunto(s)
Actinas , Depresión , Animales , Conejos , Sarcómeros/fisiología , Fibras Musculares Esqueléticas/fisiología , Miosinas , Contracción Muscular
18.
J Physiol ; 602(2): 355-372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165402

RESUMEN

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Anciano de 80 o más Años , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Envejecimiento/fisiología , Extremidad Inferior , ADN Mitocondrial
19.
Physiol Rep ; 12(3): e15922, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38296333

RESUMEN

Lipofuscin (LF) is an intracellular aggregate associated with proteostatic impairments, especially prevalent in nondividing skeletal muscle fibers. Reactive oxygen species (ROS) drive LF-formation. Resistance training (RT) improves muscle performance but also increases ROS production, potentially promoting LF-formation. Thus, we aimed to investigate if RT of a mesocycle duration increases LF-formation in type-I and II muscle fibers and whether RT increases the antioxidant capacity (AOC) in terms of SOD1 and SOD2 content. An intervention group (IG) performed 14 eccentrically accented RT-sessions within 7 weeks. Vastus lateralis muscle biopsies were collected before and after the intervention from IG as well as from a control group (CG) which refrained from RT for the same duration. LF was predominantly found near nuclei, followed by membrane-near and a minor amount in the fiber core, with corresponding spot sizes. Overall, LF-content was higher in type-I than type-II fibers (p < 0.05). There was no increase in LF-content in type-I or IIA fibers, neither for the IG following RT nor for the CG. The same is valid for SOD1/2. We conclude that, in healthy subjects, RT can be safely performed, without adverse effects on increased LF-formation.


Asunto(s)
Lipofuscina , Entrenamiento de Fuerza , Masculino , Humanos , Proyectos Piloto , Músculo Esquelético/fisiología , Especies Reactivas de Oxígeno , Superóxido Dismutasa-1 , Fibras Musculares Esqueléticas/fisiología
20.
Bioinspir Biomim ; 19(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176106

RESUMEN

Pennate muscles are defined by the architectural arrangement of their muscle fibers, which run at an angle to the primary axis of muscle shortening. Pennation angles can vary dynamically over the course of individual contractions, influencing the speed and distance of muscle shortening. Despite their relevance to muscle performance, the physical mechanisms that drive dynamic changes in pennation angle remain poorly understood. Muscle fibers bulge radially as they shorten, a consequence of maintaining a constant internal fluid volume, and we hypothesized that radial interactions between tightly packed muscle fibers are essential to dynamic pennation angle changes. To explore this, we built physical models of pennate muscles in which the radial distance between fiber-like actuators could be experimentally altered. Models were built from pennate arrays of McKibben actuators, a type of pneumatic actuator that forcefully shortens and bulges radially when inflated with compressed air. Consistent with past studies of biological muscle and engineered pennate actuators, we found that the magnitude of pennation angle change during contraction varied with load. Importantly, however, we found that pennation angle changes were also strongly influenced by the radial distance between neighboring McKibben actuators. Increasing the radial distance between neighboring actuators reduced pennation angle change during contraction and effectively eliminated variable responses to load. Radial interactions between muscle fibers are rarely considered in theoretical and experimental analyses of pennate muscle; however, these findings suggest that radial interactions between fibers drive pennation angle changes and influence pennate muscle performance. Our results provide insight into the fundamental mechanism underlying dynamic pennation angle changes in biological muscle and highlight design considerations that can inform the development of engineered pennate arrays.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Contracción Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...